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Abstract

This research developed a formal method for adding new domains to Architect, a

domain-oriented application composition system being developed at the Air Force Institute

of Technology (AFIT) to explore new software engineering technologies. Using canonical

formal specifications of domain objects, Architect rapidly composes these specifications

into a software application and executes a prototype of that application as a means to

demonstrate its correctness before any programming language specific code is generated.

Architect is implemented in the Software Refinery environment, which allows Architect

to create and manipulate object-oriented specifications. As a part of this research effort,

domain-oriented application composition systems were investigated in general, leading to

the development of a general method for populating the knowledge base of systems of this

type. This general population method was then used as a basis for creating a specific

knowledge base population method for Architect. To validate this method, Architect was

populated with the Digital Signal Processing domain. The correct implementation of this

domain was verified by creating applications and comparing their execution to expected

results. The addition of the Digital Signal Processing domain to Architect also serves to

validate the usefulness and correctness of the Architect system.

ix



A METHOD FOR POPULATING THE

KNOWLEDGE BASE OF AFIT'S DOMAIN-

ORIENTED APPLICATION COMPOSITION SYSTEM

L Introduction

1.1 Background

As software development has increased in both amount and complexity, problems

with current software development methodologies have become apparent. Currently, most

software is developed in a non-formalized and haphazard fashion-often, a different method

is used for each software development effort. The software developed is not portable-

current processes are designed to get individual programs out the door, not to generalize

or standardize groups of programs. Reuse is not widespread-often the development of

each program is treated as a totally new problem without consideration of work done on

past programs. There is a semantic gap between software developers and the users that

causes problems in communicating requirements from the users to the developers, result-

ing in software with errors and missing requirements. This gap occurs because software

development is done by programmers who are trained in programming methods, but are

not necessarily familiar with the area in which that the software is being written. On the

other hand, the experts in these areas are often not familiar with good software engineering

practices. Also, it is an onerous task to find and correct errors in software developed in

this fashion, especially large bodies of code, making verification and validation extremely

difficult.

Because of these and other problems, the software engineering community is cur-

rently researching methods to improve software engineering, including formal methods

(such as formal transformation and verification theories), decomposition methods (object-

oriented, etc.), artificial intelligence techniques, automated tools that incorporate software

development knowledge, and formalized reuse at both the code and specification level.
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Figure 1.1 shows one such formal software development method, which we call application

composition, that incorporates many of these methods.

Figure 1.1 A Formalized Software Development Method: Application Composition

In this forma1 software development method, a domain expert analyzes a domain,

captures domain information and, along with the software engineer, enters this information

into the knowledge base in the form of reusable, executable specifications called primitives.

Depending on the methods incorporated into a particular application composition system,

these primitives may represent objects, functions, parts of a domain theory, or Domain
Specific Software Architectures (DSSA) (8), among others. Included with these primitives

is information that indicates how they can be grouped together (composed) into applica-

tions. When a sufficient number of these primitives have been added to thise knowledge

base, the Application Designer can use them to create new applications. Because these

applications are developed in a formal automated environment, their execution can be

simulated. This simulation aids verification and validation by allowing the application

designer to observe the expected behaviors of the application and make sure that the ap-

plication meets the specified requirements. After the application has been validated, it

can be transformed into a target language (such as Ada or C++), or possibly directly into

machine code.
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The application composition method possesses many advantages over the traditional

software development process. Analyzing and storing domain information in this manner

is significant because it only needs to be done once and is accomplished by an expert

in the domain; some current software development methods also include a form of this

analysis, but it is only done at the application level and is usually redone from scratch

for every development effort. Also, in current methods this analysis is accomplished by

a software expert, not a domain expert who is more knowledgeable in the domain under

consideration. Once the domain is established, the reusability provided by the knowledge

base decreases development time dramatically since all the domain information needed

is already in the system. This domain analysis portion of the application composition

methodology also provides formalization and standardization across all applications in the

domain, enhancing application development, maintenance, and communication between

application designers.

The application composition method provides many other advantages. Validation

becomes easier and more complete because formal validation techniques can be performed

on the application as it is being composed, instead of waiting until the final product

is available for testing. This early validation reduces errors and required maintenance.

Similarly, prototyping capabilities and costing analyses are enhanced by the application

simulation capability because a "working" system can be created without the effort of

developing an executable program. Maintenance time is reduced because modifying a

specification (which is at a higher level of abstraction) is less complicated than changing

the low-level language code; additionally, because less maintenance is needed and the

maintenance is done at a higher level, errors normally created during the maintenance

phase are reduced. Also, since the intended user of the new software can perform the

function of the Application Designer, the requirements are more likely to be met.

There are many obvious advantages to this new formal software development method;

however, its use is still limited because many of the technologies and methods necessary to

implement this approach have not been fully developed. Additional research and testing

must be accomplished before this method can be implemented on a wide-spread basis.
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1.2 Problem Description

The Knowledge-Base Software Engineering (KBSE) group at AFIT has developed a

prototype application composition system, called Architect, to research and test this new

formal software development methodology. Architect is a domain-oriented software appli-

cation composer that implements a formal object-oriented software development method

with emphasis on reusability. A simplified, high-level conceptual diagram of this system

is shown in Figure 1.2. In this figure, the square boxes are actual Architect components

while the rounded boxes are processes. In Architect, the knowledge base (described as part

of the application composition method) is called the Technology Base.

Populate 1.2aGeneralSv
Technology Technology d

Base Bise

'1-4

W orking Vi ua
Technology Kernel Interface

Base r 
Iopo

Figure 1.2 General System Overview of Architect

Problem Statement: Investigate and implement a method to populate the Tech-

nology Base (knowledge base) in Architect and demonstrate that a more substantial domain

can be implemented in this system.
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Currently, there is no formalized method for entering domain knowledge into Archi-

tect's Technology Base (the Populate Technology Base process). This domain knowledge

includes the domain primitives and a domain model, as well as a domain-specific language

(DSL) and primitive composition information. Also, restrictions on the domain analysis

approach for developing this domain knowledge have not been formalized. Additionally,

before this research effort, only two relatively simple domains had been implemented (a

pedagogical domain called "widgets" and the digital logic domain). The purpose of our

research was to identify and describe restrictions for methods to gather the domain knowl-

edge (domain analysis) and develop a formal method to insert this domain information

into the Architect's Technology Base (domain implementation) so that it can be used to

create applications. Also, while validating this method, we demonstrated that a more

substantial domain can be implemented in Architect so that the system can be used to

compose applications in this more complex domain.

1.3 Scope

This thesis effort concentrated only on the Populate Technology Base process for

Architect-there were several other concurrent research efforts involving Architect that in-

tersected with this one. These efforts involved improving the visual interface /citeJay,

deriving a domain architecture model (12), implementing the Saved Technology Base in

an object-oriented database (7), adding an application executive capability (45), and im-

plementing an event-driven domain (41).

Because each of these efforts involved independent modifications to Architect, it

would have been intractable to use the most current version as a basis for our research.

Thus our research (as well as the others) was accomplished using Architect as it existed

(with some minor changes) at the beginning of this thesis effort (nonetheless, every effort

was made to ensure that all our work would be compatible). The one exception is that

we did incorporate the changes made as a result of Cossentine's research (as well as the

changes resulting from this research effort). Because of this independence, the knowledge

base population method developed in our research does not include some of the changes

incorporated in these concurrent research efforts. For example, this research effort was
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not integrated with the database implementation of the Saved Technology Base (imple-

mented by Cecil and Fullenkamp); however, this change from files to a database only affects

the form of the Populate Technology Base process, not the functionality. It should be a

simple transformation to take the results of this thesis and apply them to the database

implementation of the Saved Technology Base. Also, the time- and event-driven execution

capabilities added by Welgan requires additional timing information be added to the do-

main; collecting and implementing this information will need to be added to our method

at a future time, but this should be a minor change.

Due to time restrictions, only one domain was implemented as a part of our research.

Therefore, we validated our Technology Base Population method using only this imple-

mentation. Although every effort was made to generalize, some minor changes may need

to be made to this method as other domains with different features are implemented.

This research included some minor changes to the capabilities of Architect itself.

Because the implemented domain, Digital Signal Processing (DSP), was more complex

than the previously implemented domains, some extensions to the already implemented

capabilities need to be made. For example, before this work Architect required that com-

munication between primitives consist only of passing simple data types; the DSP domain

required that more complex types be added (see Chapter V). These changes were imple-

mented to make it possible to implement and use the DSP domain.

Finally, the first portion of this research (described in Chapters II and III) were

developed jointly with Raleigh Sandy. His work involved populating another application

composition system called Automatic Programming Technologies for Avionics Software

(APTAS).

1.4 Approach

The following approach was used to reach the objectives (outlined in the problem

statement) of this thesis:
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"* Review current literature. The results of this review are presented in Chapter II.

While we found much information on domain analysis, we found little information

on specific d:main implementation methods and techniques.

"* Develop a generic knowledge base population methodology. Part of this effort re-

quired us to develop a description of a generic application composition system to

define the framework for the generic population methodology. The first few sections

of Chapter III present this generic application composition system, while the later

sections expound upon our generic knowledge base population methodology.

"* Instantiate the developed generic knowledge base population methodology for Ar-

chitect. Because the methodology developed in Chapter MI is generic, it must be

instantiated for a particular application composition system before it can be used.

Chapter IV shows our instantiation of this methodology for Architect.

"* Implement a domain. To validate the population method instantiated in Chapter IV,

we used it to populate Architect with the Digital Signal Processing (DSP) domain.

This domain implementation, along with developing some DSP applications, also met

the objective of demonstrating that a more substantial domain could be implemented

and used in Architect. The results of this implementation and how the domain was

validated are discussed in Chapter V.

"* Identify recommendations and conclusions. Several recommendations for improving

Architect and for further research were identified during our thesis effort; the more

important ones are discussed in Chapter VI. Also, our general conclusions drawn

from this research effort are discussed in this chapter.

This thesis also includes several appendices. Appendix A specifies in detail the

domain knowledge required to implement a domain in Architect. Appendix B presents

some example DSP applications. Appendix C summarizes the conventions used for the

Technology Base files in Architect. Appendix D list the features identified during this

research for possible incorporation into future versions of Architect. Finally, Appendix E

explains how to get copies of the code created as a part of this research.
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H. Literature RevieuA

2. 1 Introduction

Many researchers are studying methods to encapsulate knowledge needed for software

engineering into reusable models. They have proposed ideas to improve knowledge-based

software engineering and shorten the gap between software and hardware system develop-

ment. Some of this research is directly related to our knowledge base population problem.

The technology involved in the effective modeling of application domains is very im-

portant to the success of knowledge-based software engineering. Software engineers must

develop formal knowledge acquisition processes that solve the knowledge base population

problem. Section 2.2 reviews ideas we found useful in our research from current literature

in the areas of domain analysis and domain modeling. Both domain analysis and domain

modeling focus on the effective modeling of application domains. "There is a strong rela-

tionship between [domain analysis] and knowledge acquisition. Building a knowledge base

and defining heuristics for an expert system are basically the same problems as [domain

analysis]" (13).

Systematic reuse is another topic that supports knowledge-based software engineer-

ing. Arango defines systematic reuse as an activity "in which information is systematically

acquired and reused in software construction under the control of some management guide-

lines and costing models" (4:84). The knowledge base must support the code generation

component of a knowledge-based software engineering system by providing a library of

reusable software specifications or implementations. Section 2.3 reviews ideas we exam-

ined in the area of systematic reuse.

There is a clas; of knowledge-based software engineering systems known as appli-

cation composition systems that employ techniques like automatic code generation and

formal methods to transform specifications into executable code. Because both Architect

and APTAS fall into this class of syatems, we studied the characteristics of application

composition systems. Our study focused on the application composition process and the

'This chapter was co-written with Raleigh Sandy and also appears in (35).
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knowledge base structures. Section 2.4 describes the composition process and knowledge

base structures of several application composition systems.

Several terms require definition before we begin our review of the related research.

We have already used the term application domain that we define as "a coherent set

of systems that exhibits common features and functionality across existing and proposed

instances" (28). Information occurring within the scope of an application domain, such

as functional behaviors and parameters, is considered domain knowledge. The term

domain analysis was first introduced by Neighbors as "the activity of identifying objects

and operations of a class of similar systems in a particular problem domain" (26). Prieto-

Diaz later defined domain analysis as the process where "information used in developing

software systems is identified, captured, and organized with the purpose of making it

reusable" (31:47).

2.2 Domain Analysis

Domain analysis is the first, and probably most important, step in adding new in-

formation to a knowledge base. Domain analysis was originally adopted as a process to

automate several aspects of software development including specification analysis, verifi-

cation, and application generation (4:82). Early research into domain analysis uncovered

the importance of organizing domain knowledge into reusable components. Researchers

learned that identifying specific knowledge to reuse through domain analysis was no easy

task. Neighbors discovered that "the key to reusable software is captured in domain anal-

ysis in that it stresses the reusability of analysis and design, not code" (27) and later

proposed a domain analysis method called DRACO. Other researchers have also proposed

domain analysis approaches, and we summarize some of these in the following paragraphs.

Prieto-Diaz (32) proposed the data flow model shown in Figure 2.1 that represents his

domain analysis approach. In his model, the domain expert (a knowledgeable person in that

particular field) and domain analyst (a person with training and experience in analyzing

domains) identify and select the domain knowledge. Possible sources for domain knowledge

include expert advice, customer surveys, technical literature, and existing implementations,

as well as current and future requirements. The domain analyst then assists the domain
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Figure 2.1 Domain Analysis Approach Proposed by Prieto-D~az (32:67).

expert in abstracting and encapsulating the collected domain knowledge into a subset of

the expected outputs (i.e., domain model, domain language, domain taxonomy), as well as

domain standards and reusable components. The entire approach is implicitly iterative.

Arango based his view of domain analysis on "the eyatematic and incremental ap-

proximation to a definition of an ontology and semantics for a problem domain" (4:83). He

proposed an operational definition of domain analysis focused on a reuse-based task (4:83):

Given:

1. a partial, nonformal description of a problem domain

2. a model of a reuser as a learning system

Find: a systematic method to

1. identifpI information in the problem domain which, if available to the reuser
in appropriate form, would allow it to attain a specified level of perfor-
mance,

2. capture the information identified as relevant, and

3. evolve the acquired information to enhance or maintain the performance
of a reuser.

The domain analysis results in a model of the application domain. As with the approach

proposed by Prieto-D~az, this approach identifies and collects reusable domain knowledge.
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However, Arango's approach also compares the performance of the reuse-based task to a

desired performance level. The domain analysis works to improve the reuse-based task until

it reaches the desired performance. Therefore, Arango modeled the reuser as a learning

system where improvements to performance correspond to subsequent iterations of domain

analysis.

McCain (25) proposed a domain analysis approach consisting of two separate tasks.

The first task, application domain analysis, identifies a hierarchy of components and their

associations. Application domain analysis is basically the same as other domain analysis

approaches studied. This task has three activities: define reusable entities, define reusable

abstractions, and perform classification of reusable abstractions. The second task, com-

ponent domain analysis, defines the individual component behaviors and requirements.

This task has four activities to define component interfaces, constraints, algorithms, and

customization requirements. McCain's approach is different from other domain analysis

approaches by his explicit inclusion of a component domain analysis task.

Kang and others (18) proposed a domain analysis approach called Feature-Oriented

Domain Analysis (FODA). The approach identifies prominent features (similarities) and

distinctive features (differences) of software systems within an application domain. The

features also define mandatory, optional, and alternative characteristics of software systems

in the domain. Unlike the other domain analysis approaches we have summarized, the re-

searchers described FODA in sufficient detail to use on large domain analysis projects (ones

with several domain analysts). However, this depth of detail can restrict the applicability

of the approach.

The Domain Analysis Working Group Report (39) described two domain analysis

approaches. The first approach lists the common steps found in other domain analysis

approaches:

1. Define Domain Analysis

2. Identify and scope the domain

3. Select a representative set of systems to study

4. Gather inputs for the domain analysis

5. Perform feature analysis at the requirements level
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6. Analyze separability, selectability, and trade-offs of features

7. Select an implementation technology

8. Implement and validate products in phases

9. Deliver products of domain analysis

However, they give no real explanation of how a domain analyst accomplishes these steps.

They give more detail for the second approach:

1. Acquire knowledge

2. Perform high-level functional analysis (top-down)

3. Identify objects and operators (bottom-up)

4. Define domain models and architecture

A different view of domain analysis was proposed by Iscoe (14). He focused on the

results of the domain analysis rather than a specific approach or the inputs to the domain

analysis. He suggested the problem was "to create a model for domain knowledge that

is general enough to be instantiated in several domains" (15:299). His approach involved

developing levels of "meta-models" that a domain analyst uses to capture the information

of a particular application domain. Models consist of objects and their attributes, along

with the operations performed upon those objects. This approach had two distinct charac-

teristics: (1) attributes and operations are defined in terms of their underlying scales and

(2) object classes use multiple inheritance. Iscoe's approach to domain analysis i. known

as domain modeling.

Domain modeling is a subset of domain analysis. It is a formal approach to capturing

domain knowledge into a specific form that results in a defined knowledge structure called a

domain model. We define domain modeling as the process of organizing and encapsulat-

ing information within an application domain into a predefined knowledge structure. The

structure for a domain model depends on the specific application domain being modeled

as well as the domain analysis approach applied.

Prieto-Dfaz suggested that the structure of domain models "range in level of com-

plexity and expressive power from a simple domain taxonomy to functional models to

domain languages" (31:51-52). He defines a domain language as "a collection of rules that

relate objects and functions and which can be made explicit and encapsulated in a formal
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language and further used as a specification language for the construction of systems in

that domain" (32:66). Arango suggested that a domain language documents a "shared

paradigm [that] is a precondition for domain analysis" (4:82).

Neighbors developed a domain modeling approach with his DRACO system (27),

one of the first systems to specifically employ domain languages and domain models. His

approach involved a hierarchy of domains consisting of different levels of abstraction. Do-

mains at the highest level of abstraction are called application domains. Domains at the

lowest level of abstraction model conventional programming languages and are called ex-

ecutable domains. Those domains in between are called modeling domains. Application

domains span several modeling domains. A domain language defines the external syntax of

an application domain. The domain language semantics are written in Backus-Naur form

and augmented with control mechanisms.

The domain analysis approaches we have described above are a sample of those

approaches published. The software engineer has many options for using or modifying

an existing approach. Wartik and Prieto-Diaz (43) presented a strategy for comparing

different domain analysis approaches that included the following criteria:

"* definition of "domain"

"* determination of problems in the domain

"* permanence of domain analysis results

"* relation to the software development process

"* focus of analysis

"* paradigm of problem space models

"* purpose and nature of domain models

"* approach to reuse

"* primary product of domain development

Software developers can use these criteria to choose a domain analysis approach that meets

their objectives and is within their current resources.
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2.3 Systematic Reuse

Wartik and Prieto-Diaz also described three categories of reuse: ad hoc, opportunis-

tic, and systematic (43). Ad hoc reuse is reuse without any formal reuse method. Op-

portunistic reuse is a software development process with methods to identify the types of

reusable components, when to use them, and where they might be found. Systematic reuse

is a software development process with methods to 4efine and construct reusable compo-

nents. They suggested that a software development process could not realize systematic

reuse without including the role of domain analysis.

The success of knowledge-based software engineering systems, such as application

composition systems, depends on the practice of systematic reuse. Prieto-Diaz suggested

that domain analysis could realize systematic reuse by successfully "deriving common

architectures, generic models or specialized languages that substantially leverage the soft-

ware development process in a specific problem area" (31:47). He provided an example

of how domain analysis might fit into the softwtre development process (shown in Fig-

ure 2.2). Prieto-Diaz claimed that this concept could support several methods of software
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Figure 2.2 Domain Analysis and Software Development (31:52).
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development other than the waterfall model. He called this concept a reuse infrastruc-

ture and stated:

Domain models, in a variety of forms, support (i.e., control) the different phases
of software development. Reusable resources are selected and integrated in the
new system. Reuse data is then collected and feedback to domain analysis for
refining the models and for updating the library. As developed systems become
existing systems they are also used to refine the reuse infrastructure (31:52).

Neighbor's DRACO system generates software systems from abstract specifications

using its hierarchy of domains. A specification begins in an application domain and gets

refined by the system through modeling domains until it can be implemented using an

execution domain containing reusable components.

Reusable components, like those in DRACO's execution domains, are very important

to systematic reuse. The reusable components must be constructed using some consistent

structure called a software architecture. Software architectures define a consistent compo-

nent structure and also define how to compose applications using a domain's components.

Researchers at the Software Engineering Institute have studied systematic reuse and have

developed a software architecture called the Object Connection Update (OCU) model (20).

Figure 2.3 shows a subsystem in the OCU architecture. Applications are composed of at

Figure 2.3 An OCU Subsystem (20:18).

least one subsystem under the control of an application executive. Subsystems consist of

imports, exports, a controller, and objects. Objects consist of inputs, outputs, and update

functions. Gool (12) summarizes the OCU model as well as several other documented

software architectures.
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2.4 Application Composition Systems

Both domain analysis and systematic reuse play important roles in knowledge-based

software engineering systems, especially in the class of application composition systems.

There are several application composition systems in use today. Anderson (3), Ran-

dour (33), and Weide (44) developed the initial version of Architect, which is an application

composition system that implements the OCU software architecture. In this system, do-

main information is captured in reusable objects at the specification level. Along with

these reusable objects is information specifying a domain-specific language (DSL) and vi-

sualization specification language (VSL). An Application Specialist (the person creating

the software system, called an application) composes applications by either entering a tex-

tual specification using the DSL or by visually manipulating icons specified by the VSL.

The Architect system is undergoing further study at the AFIT (see research by Gool (12),

Cossentine (9), Welgan (45), and Waggoner (41)).

The Lockheed Software Technology Center, under contract with the United States

Air Force, prototyped an application composition system (17). This system, called AP-

TAS, "automatically synthesizes executable code from high-level tracking system specifi-

cations" (17:1). APTAS generates applications through the support of its Tracking Tax-

onomy and Coding Knowledge Base. The system uses a software architecture enforced by

the knowledge base structure; however, there is no method defined to store information

(on existing or new domains) into its knowledge base (see research by Sandy (35)).

Several other application composition systems exist. Some of these include the

Kestrel Interactive Development System (KIDS) developed at Kestral Institute (36), the

Khoros system developed at the University of New Mexico (40), and the Intelligent Design

Aid (IDeA system) developed at the University of Illinois (23).

2.5 Summary

Software reuse has come a long way from ad hoc reuse of low-level code. The reuse

of high-level abstractions capturing domain knowledge has become a reality through tech-

nologies like domain analysis and domain modeling. Software architectures, combined
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with domain analysis, have made it possible for researchers to build software development

systems that practice systematic reuse of both low-level code and high-level abstractions.

Application composition systems, like Architect and APTAS, have shown that the users

themselves can develop their own software systems in a familiar language and environment.

Ongoing research in domain analysis and systematic reuse will provide more insight in the

development of more operational application composition systems and modeling more ap-

plication domains. These advances promise to improve the software development process

drastically.
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III. Knowledge Base Population Methodology'

3.1 Introduction

Many researchers have envisioned software development evolving from the art of

hand-writing code to the engineering discipline of combining and specializing reusable

components. One such researcher, Michael Lowry (22:630), envisioned Knowledge-Based

Software Engineering environments that automate software reuse using domain knowledge

captured through domain analysis. The KBSE research group at AFIT is developing formal

methods to implement the automated reuse that Lowry envisioned in the above paragraph.

The group's work is based on several of Lowry's premises. This thesis is part of the

group's work, and it is focused primarily on how to capture the reusable components that

Lowry described into an automated software development system (i.e., how to populate

the system's knowledge base).

This chapter proposes a general process that can be tailored to populate the knowl-

edge bases of a particular class of software development systems. Section 3.2 defines the

particular class of software development systems. Section 3.3 presents our view of domain

models and their corresponding knowledge base representations. Section 3.4 describes the

domain analysis methods that we found helpful in developing our process. We use these

methods in Section 3.5, along with our system definition and domain model view, to de-

velop a general process to populate a system's knowledge base. Finally, in Section 3.6,

we support the development of a "general" process and define several constraints to its

implementation.

3.2 Generic Domain-Oriented Application Composition System

We developed a knowledge base population process for a specific class of software de-

velopment systems. There are several characteristics that distinguish this class of systems.

Each system has a knowledge base and a process to compose applications. The knowl-

edge base stores reusable components. Applications are specified using these components.

Users can modify, save, and maintain applications through the composition process. Also

'This chapter was co-written with Raleigh Sandy and also appears in (35).
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through the composition process, users can simulate the execution of application (before

code is created), translate them to some external form (i.e., synthesize code), and execute

them outside the system. These characteristics, including the ability to synthesize exe-

cutable code, describe the class of application composition systems. However, our class

of systems has a knowledge base that must be organized into application domains in an

object-oriented fashion. Therefore, we refer to this class of systems as Domain-Oriented

Application Composition Systems (DOACS).

There are several advantages to this type of system. The most important advan-

tage is systematic reuse. Reuse is not limited to the code level, but occurs at all levels,

primarily at the specification level. Maintenance also occurs at the specification level in-

stead of at the more difficult code level. The application composition process, with its

ability to simulate specification behaviors, provides an ideal environment to develop rapid

prototypes. This type of system can also provide the powerful capability of creating sys-

tems within a graphical environment. The user works with the components and does not

have to possess expert knowledge of the domain (e.g., specific algorithms). A user does

not need traditional programming knowledge to create new applications, nor to maintain

existing applications, because the system automatically generates applications from their

specifications. Users can possibly choose between different hardware platforms and pro-

gramming languages when generating code. Finally, these systems could automate the

"housekeeping" chores (e.g., configuration management) so users can concentrate on the

more important task of application specification.

It is important to make the distinction between domain-oriented and domain-specific

application composition systems. A domain-specific system can be used to compose appli-

cations in only one domain and new domains cannot be added. A domain-oriented system

can be used to compose applications in any domain implemented in that system and more

domains can be added. While there are similarities between these two types of systems, the

fact that domain-specific systems contain only one domain greatly simplifies the creation of

the system and, of course, nullifies the problem of knowledge base population since the do-

main information is integrated into the system when it is built. Although domain-specific

systems are limited to one domain, the creators of the system are able to take advantage
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of the features of that particular domain when designing the system (e.g., the system can

be custom tailored around the architecture that best fits that particular domain). Because

of this, domain-specific systems have an advantage over domain-oriented systems in ease

of composition and capabilities in that particular domain. However, it is not practical

to build domain-specific systems for every application domain. Due to their modularity,

it is easier to update domain-oriented systems with new software engineering techniques.

Also, only one system has to be updated to take advantage of any new technique for many

domains as opposed to updating several domain-specific systems (it would be a significant

effort to update each system separately).

Figure 3.1 contains the major characteristics of our generic DOACS (G-DOACS). We
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Figure 3.1 Generic Domain-Oriented Application Composition System (G-DOACS)

have used rounded boxes to represent processes and subprocesses (e.g., Compose Appli-
cations and Create), regular boxes to represent physical structures (e.g., Knowledge

Base), and ovals to represent the roles of the people involved. Notice that we have also
included another important characteristic to the G-DOACS definition, the addition of a

Populate Knowledge Base process that performs the actual knowledge base population.
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3.2.1 Compose Applications. An Application Specialist uses the Compose

Applications process to create, modify, and validate (through simulation) software ap-

plications. The application can then be transformed into executable code. The specific

methods to accomplish this process may vary from one DOACS to another.

In general, the Application Specialist creates an application by choosing compo-

nents from a domain-specific component library, specifies how those components connect

together, and declares any necessary processing information. The Application Specialist

does not add any new functionality (i.e., no new code), but does specify a component's

particular functionality by setting various component attributes. The ability to specify

components from several domains within a single application is not a requirement for our

class of systems, but this is a desired capability.

Rapid prototyping can be easily accomplished through the simulation capability. The

Application Specialist can quickly compose an application and simulate its execution. If

the behavior meets the requirements, then the Application Specialist can continue to refine

the application; if not, then the Application Specialist can modify the application or throw

it away and start over.

We use the term "simulating" rather than "running" because no code has been

generated. The system uses the current application specification and any selected reusable

components to simulate the behavior that would be expected if code had been generated

and executed. Through simulation, the Application Specialist can validate the application's

behavior and modify the specification until it meets the desired behavior.

After the application is validated, the Application Specialist can transform it into

an executable form (i.e., synthesize code) for a particular target platform. At any stage

of application development, the Application Specialist can save the current application

specification. This environment also supports application maintenance by allowing the

Application Special½is to load and then modify the application.

3.2.2 Knowledge Base. Although specific knowledge bases vary, every DOACS

knowledge base contains at least three distinct types of information: applications, reusable

components, and domain model representations.
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Applications are compositions of the reusable components, along with composi-

tion information (e.g., how they are connected, execution order). Therefore, applications

contain either links to the reusable components they employ or copies of each reusable

component. If links are maintained, then the attribute values that have been changed by

the Application Specialist are also saved.

Reusable components (we will often refer to them as just components) are the

objects that are connected together to build applications. Reusable components are ei-

ther primitives or reusable applications. Primitives are independent objects that capture

the behavior and attributes of objects and classes specified during domain analysis and

identified in the domain model. Reusable applications are those applications (or parts

of applications) identified for potential reuse within future applications. They are some-

how processed to make them available to the Application Specialist for composition into

applications just like the primitives.

Domain model representations are formal structures that organize the reusable

components and other domain-specific information (such as data types, semantic rules, and

perhaps even specific architecture information) within an application domain. The types

of information in a particular representation depend primarily on the specific application

domain and on the chosen approach to domain analysis. We discuss our view of domain

models and their representations in more detail in Section 3.3.

3.2.3 Populate Knowledge Base. The Populate Knowledge Base process is

the focus of our research and is the topic of the rest of this chapter. Briefly, knowledge

base population is a process in which the Domain Engineer captures domain information

as high-level abstractions, and the Software Engineer represents these abstractions in a

form that is stored directly in a particular system's knowledge base.

In our general process, population begins by selecting an object-oriented Domain

Analysis approach. The Domain Engineer models a particular application domain using

the domain analysis approach chosen. The result of the domain analysis is a domain model

and individual component abstractions (i.e., component behavior definitions).
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The Software Engineer uses the domain model and the individual component ab-

stractions to create the formal structure of that domain in the knowledge base. We call

this construction of a domain model representation the Domain Implementation. The

domain model representation is a particular instantiation of a domain model and the indi-

vidual component abstractions for a specific DOACS knowledge base. Once instantiated,

the Software Engineer adds the domain model representation to the knowledge base. The

Application Specialist can then access any new information when composing applications

in that domain.

We borrowed the term reuse infrastructure from Arango (4) and Prieto-Diaz (31)

to refer to a domain model representation. We developed our process to keep the domain

model as independent of the particular DOACS and its knowledge base structure as pos-

sible. This independence delays (for as long as possible) the addition of any particular

system constraints to the analysis process. The view of a domain model being different

from its reuse infrastructure is important to our development of a general knowledge base

population process.

3.3 Domain Models and Reuse Infrastructures

The terms domain model and reuse infrastructure are central to our research and,

in our opinion, are ill-defined in the current literature where they take on many different

meanings. In this section, we define the meanings of these two terms with respect to our

research.

Many researchers have viewed the results of a domain analysis as a set of reusable

software components and composition rules that capture and implement the semantics of

applications within the domain. Given this interpretation, however, Domain Engineers

must know the particular knowledge base structure before completing their domain analy-

sis. Domain analysis becomes a task of finding, identifying, organizing, and implementing

reusable components. Domain Engineers become the people responsible for populating the

knowledge base and collecting the results of their domain analysis within the knowledge

base structure itself.
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This approach can lead to quick and efficient domain implementations, but can also

lead to several problems because of inherent limitations in any knowledge base. Because

all domain information cannot be stored in a particular knowledge base, it is difficult to

reuse the domain analysis results to populate the knowledge base of another DOACS.

Also, problems can occur when identifying or changing the design of the domain model or

making other changes as new information is discovered (e.g., better domain implementation

methods), because some domain information may have been lost through design decisions

when populating the knowledge base. In addition, if the Domain Engineer views a domain

through the structure of a particular knowledge base, it will influence the interpretation

of domain knowledge and may result in missed or incorrect domain encapsulation. This

problem is similar to the difficulty in identifying seemingly simple solutions to a problem

when viewing it through the wrong paradigm.

For these reasons, among others, we make a distinction between the results of the

domain analysis (domain model and component abstractions) and the implementation of

the domain (or reuse infrastructure) in the knowledge base. Therefore, although many

researchers have assumed the domain model and its reuse infrastructure (domain model

representation) are one and the same, we agree with Arango:

Models of domains and reuse infrastructure should be treated as separate en-
tities, conceptually and practically. Models of domains capture the results of
the learning process in domain analysis and support the application of learning
techniques. Reuse infrastructures are specified to support the efficient reuse of
the information from the model in particular environments (4:88).

This division between domain analysis and domain implementation that we are

proposing is similar to a division in compilers. Compiler theory makes a distinction between

the intermediate code generated by the front end (analogous to our Domain Analysis) and

the machine code generated by the back end (analogous to our Domain Implementation).

The front end of the compiler includes those portions of the compiler "that depend pri-

marily on the source language and are largely independent of the target machine ... [while]

the back end includes those portions of the compiler that depend on the target machine,

and generally, these portions do not depend on the source language, just the intermediate

language" (1:20). The front end can be created once for a language, and then different back
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ends can be combined with it to create compilers for different machines. In our generic

methodology, we propose that domain analysis and domain implementation are analogous

to the front and back ends of a compiler. The results of one domain analysis can be used

to populate different DOACSs.

3.3.1 Domain Model. The software engineering community has many different

views on what constitutes a domain model. In G-DOACS, a domain model is a structure

that captures an application domain's individual components (including their attributes

and operations), relationships between components, and other related information (such

as shared data types, global operations, composition rules, and architecture information).

Prieto-Diaz suggested that the the purest form for a domain model would be a domain

language (31:52) that captures all the information about a domain listed above. The

syntax of such a language would capture the types of components (with their attributes)

and the ways they can be combined, while the semantics would capture the the behaviors

of component combinations.

For our process, we chose not to include the individual component behaviors (se-

mantics) as part of the domain model. We separated the component behaviors from the

domain model because defining behaviors is often the most difficult task during domain

analysis. Also, users can compose applications with a well-defined domain model imple-

mentation but with only partially defined (and implemented) component behaviors. This

allows a Domain Engineer to quickly capture a small "core" of domain knowledge (the do-

main model plus a few of the component behaviors) that, once implemented, provides the

Application Specialist the capability to compose simple applications before many of the

component behaviors have been defined. Under our definition, the domain model contains

only the information that fully describes the syntax of an application domain; individual

component behaviors are defined and implemented separately.

In this chapter and those that follow, we describe two instances of the domain model.

The first is the domain model created during the domain analysis process (as described in

the preceding paragraph); the second is the implementation of the domain model in the
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knowledge base. The instance we are identifying with the term domain model should be

clear from the context.

3.3.2 Reuse Infrastructure. As stated previously, the results of the domain analy-

sis should be independent of any particular DOACS. So ideally the domain analysis outputs

a domain model and component abstractions without constraints to their usefulness to any

particular DOACS. This approach follows the established software engineering practice of

pushing design decisions down to the lowest possible level. If the domain analysis is done

correctly, the domain model and component abstractions can be evolved over time without

the need to reanalyze the whole domain. The domain analysis results can also be used to

populate the knowledge base of any DOACS (i.e., the results are reusable2).

Since the domain analysis results are derived independent of the knowledge base

structure, the system cannot use them to generate applications. Therefore, the Software

Engineer must organize and implement the domain model and component abstractions into

the correct knowledge base representation for some particular DOACS. We call this instan-

tiation of the domain analysis results the reuse infrastructure. The reuse infrastructure

implements the information captured in the domain model and component abstractions in

the form required by the structure of a particular knowledge base. Traditional software

engineering methods apply to the development of any reuse infrastructure.

Separating the reuse infrastructure from the domain analysis results allows us to

develop our knowledge base population process without introducing constraints too early

in the process. Before presenting our process, we will discuss several theories that were

helpful in our research.

3.4 Domain Analysis Research

In Chapter II, we summarized the current literature in the field of domain analysis

and discussed the relation between this field and our research in knowledge base population.

This section summarizes some of the contributions of two recognized researchers in the

2 Methods to capture domain information in an object-oriented database feeding the knowledge bases of
several DOACS are addressed by Cecil and Fullenkamp (7).
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field: Prieto-Diaz and Arango. Prieto-Di az (32) proposed a functional model of a domain

analysis process while Arango (4) explored the domain analysis process in a formal software

reuse system. Our process is built upon many of their contributions.

3.4.1 Prieto-Diaz's Research. According to Prieto-Diaz (32), domain analysis

captures the "essential functionality" of components, which assiste the application devel-

oper. He proposed the data flow diagram in Figure 3.2 with three activities that are

involved with domain analysis: prepare domain information, analyze domain, and pro-

duce reusable workproducts. These three activities comprise the task of knowledge base

population.

Figure 3.2 Producing Reusable Workproducts (32:67).

The prepare domain information activity produces the requirements of the domain

analysis. This activity includes bounding the application domain, identifying the sources

for domain knowledge, selecting a specific domain analysis approach, and defining the

expected results.

The analyze domain activity uses these requirements to produce collections of do-

main abstractions including the domain model, domain frames, a domain taxonomy, and

a domain language. This activity is the domain analysis theory proposed by Prieto-D~as

- we previously presented the details of the analyze domain activity with the data flow

diagram in Figure 2.1. The domain abstractions capture the behavior of objects within
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the domain, identify their relationships, and model the structure of these relationships.

Prieto-Diaz suggested that the ideal result of domain analysis is the domain language.

The produce reusable workproducts activity takes the domain abstractions and pro-

duces a set of reusable components. The components implement the objects and relation-

ships identified in the domain model and used in the domain language.

Prieto-Diaz proposed a functional model that successfully identifies the relationship

between domain analysis and the production of a reusable infrastructure. It also suc-

cessfully defines several outputs involved in the process; however, it does not sufficiently

describe the requirements of each activity. For instance, there is nothing that constrains

the structure of the reusable components. Systematic reuse cannot be realized without

such constraints. His model does not explicitly capture the importance of feedback and

iteration in the domain analysis process, nor does it identify the role of the knowledge base

in separating the reuse infrastructure from the domain model.

3.4.2 Arango's Research. Arango (4) outlined a "domain engineering framework"

based on the concepts of software reuse. His framework serves as a structure for synthe-

sizing a tailored domain analysis process. Arango suggested his framework has general

application because reusers are modeled as learning systems.

Figure 3.3 describes the learning component using boxes from the Structured Analysis

and Design Technique. The component consists of three activities and is defined by a set

of state variables (4:84):

"* Exp: expertise in the domain

"* ReuseLog: feedback from the reuse task

"* RI: reuse infrastructure

"* TL: technologies to support the representation and evolution of the domain model

"* MoD: domain model

"* Lc: method to increase coverage

"* Le: method to improve efficiency
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•MoT: model of the reuse task

The develop MoD activity represents the actual domain analysis and results in a

domain model. Arango made a clear distinction between the domain model and the reuse

infrastructure. He stated that the distinction is analogous to the distinction between

"representations for systems specifications and programming languages for systems imple-

mentations" (4:82). This distinction allows the domain model to be independent from the

MoT.

The other two activities use the current state of the domain model to organize and

implement a reuse infrastructure. The particular organization and implementation de-

pend heavily upon the particular MoT. Traditional software development procedures are

applicable during these two activities.

Arango's learning component is very similar to the functional model proposed by

Prieto-Diaz. It separates the creation of a domain model from the development of the reuse

infrastructure. Arango successfully identified the various traits involved in the development
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of a reuse infrastructure. He also explicitly indicated the roles of feedback and iteration.

However, his state variables were too ambiguous. He did not sufficiently describe the model

of the reuse task or the role of the knowledge base, which are essential in developing the

reuse infrastructure. There was also no clear distinction between the results of infrastruc-

ture specification and those of infrastructure implementation. Prieto-Diaz had combined

these two activities into his produce reusable workproducts, but Arango seemed to think

there should be some distinction. Our research combines these two processes into a single

knowledge base population process. We attempt to clarify all traits involved in knowledge

base population without adding additional constraints to the process.

3.5 Knowledge Base Population Process

We propose a five-step process to knowledge base population that explicitly identi-

fies the roles of the Domain and Software Engineers, incorporates feedback, and iteratively

captures a domain (in stages). Each step has defined inputs, outputs, methods, and con-

straints. Our process is shown in Figure 3.4, using boxes from the Structured Analysis and

Design Technique. The methods (bottom arrows) driving each activity or step must be

selected prior to performing the activity. The constraints (top arrows) show the require-

ments that drive each activity. The inputs and outputs (left and right arrows, respectively)

show the domain information as it is captured and passed from activity to activity.

Activities one and two compose our domain analysis process and result in a domain

model and component abstractions. As discussed in previous sections, this domain analysis

is independent of the particular DOACS. Activities three and four comprise our domain

implementation process that results in a reuse infrastructure and, as can be seen from

the constraints, that is very dependent on the particular DOACS. This division between

domain analysis and domain implementation is such that one domain analysis can feed

multiple domain implementations for different DOACS. Activity five provides an evaluation

and feedback mechanism to iteratively improve the domain model, component abstractions,

and the reuse infrastructure. The remainder of this section defines each activity and all

its associated traits.
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base of a DOACS with a particular domain is generating a domain model. A domain model

is created during the initial domain modeling3 activity and periodically updated through

subsequent iterations. Before performing the initial iteration of this process, the methods
and constraints must be defined, including the specific domain modeling approach and the

formal modeling requirements.

The Domain Engineer should select the domain modeling approach based on the

strengths and weaknesses of the approach and on the characteristics of the particular do-

main to be analyzed. We recognize that factors such as the Domain Engineer's familiarity

with certain modeling approaches, management's overall goals, and the availability of re-

sources will also play an important role in choosing a specific approach. Any well-defined

object-oriented modeling approach should be sufficient since our methodology requires

3 In keeping with our definitions presented in Chapter 11, we considered domain modeling to be a type
of domain analysis that results in a domain model with some formalized structure.
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consistency and completeness4 of the resulting domain model, but puts no restrictions on

the form of this model (other than object-oriented). The Domain Engineer is the one who

will have to use the approach to create and update the domain model. Therefore, the

approach must be thoroughly understood. Also, the approach should take advantage of

any available automated domain analysis/modeling tools to aid in capturing the domain.

Such tools could improve performance and could aid in maintaining the domain model's

consistency and completeness (information on one such tool can be found in Crowley's

research (10)). We expect that these tools will be tied together after they (and DOACS)

become more established (effectively automating much of the role of the Software Engi-

neer).

The modeling requirements come from both the domain modeling approach cho-

sen as well as the fact that domain analysis must be accomplished using object-oriented

techniques. The minimum modeling requirement consists of a formal structure that en-

capsulates all the information represented in the domain model. The structure is similar

to a meta-model structure (proposed by Iscoe (14)) and should be in some object-oriented

form.

Once the domain modeling approach and modeling requirements have been defined,

the Domain Engineer can begin creating the domain model. The domain model is trans-

formed from a simple hierarchy of abstraction identifiers to a formal structure of captured

domain semantics (which ideally leads to a domain-specific language). As the domain

model evolves, the Software Engineer can begin applying the constraints of a knowledge

base for a particular DOACS to construct a reuse infrastructure (i.e., instantiate the do-

main model). However, before discussing the domain implementation, we must address

the task of defining individual component abstractions.

3.5.2 Abstract Component Behavior. After a structure has been created contain-

ing components in the domain, the behavior of the individual components must be defined.

McCain refers to this process as "component domain analysis" (25:73). The abstraction

4By completeness, we do not mean that the domain model has to capture the whole domain, but rather
that the parts of the domain that it does capture are completely captured within the scope of the domain
analysis approach.
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technique chosen by the Domain Engineer must be consistent with the modeling approach

used in the Create/Evolve Domain Model activity (ideally, they both should be part of

an integrated domain analysis approach). The results of the abstraction technique should

be in a form that the Software Engineer understands and can implement. For example, it

is possible to create Z schemas that cannot be implemented on a computer system. The

distinct features of the domain under analysis should also play a role in which abstraction

technique the Domain Engineer chooses. However, although different abstraction tech-

niques may be used for different domains, using the same technique within a domain is

required.

One of the most important aspects of the component abstraction is the interface

specification. Although object interfaces could have been partially defined during the

previous activity (if not completely defined, depending on the modeling approach chosen),

each component abstraction must have interfaces that support consistent relationships

between other component abstractions. The Domain Engineer must keep in mind that this

whole process is based on an object-oriented methodology and that the final result will

be objects that can be connected together. Incorrect or inconsistent component interfaces

will cause severe problems when the Software Engineer tries to implement the abstractions

and also when the Application Specialist attempts to compose applications.

Another aspect of each component abstraction is the effect of certain component at-

tribute values. Attributes contain data that represents characteristics of an object (20:20).

These characteristics may have a large impact on the behavior of a particular component.

The Domain Engineer must identify these impacts during this activity. For example, a

c3mponent that converts a real number to an integer may have an attribute that spec-

ifies whether that component will do the conversion by rounding to the nearest integer,

truncating, or rounding up to the next integer. One useful feature of a DOACS is the

ability for the Application Specialist to change these component attributes and "tailor"

the component for a specific application. However, components can have attributes that

should not be changed by the Application Specialist (for example, attributes that reflect

the internal state of the component). These internal attributes should also be identified

during this activity.
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It is expected that the Domain Engineer may identify better ways to model the do-

main at this stage of the process. For example, at this point, the Domain Engineer may

choose to combine objects or classes (generalization), or split an object or class (special-

ization). These improvements are acceptable (and even desirable). As stated before, our

process is iterative. Component abstractions are evaluated (by the Evaluate Domain De-

velopment activity), and the Domain Engineer is notified of any problems. Our study of

domain analysis revealed that the best domain model is the one that has evolved over time

(i.e., it is difficult to come up with the best model on the first iteration).

We recognize that the Domain and Software Engineers may choose to merge this

activity wit" the Implement Reusable Components activity by using a DOACS-specific

method to define and implement individual component behaviors. This could save time

and effort during the domain analysis, but it has its drawbacks. When system require-

ments and implementation requirements constrain the definition of individual component

behaviors, biases could easily enter into the component definitions (e.g., implementation

details often "muddy the water" of a "pure" domain analysis). Any bias introduced at

this early stage may cause difficulties as the domain implementation evolves. Also, ab-

stracting component behaviors in this way may make it difficult (or impossible) to reuse

the abstracted components to populate another DOACS.

3.5.3 Design Reuse Infrastructure. The domain model is a structure (much

like the syntax and semantics of a grammar) that captures the individual components,

relationships between components, and other related information in an application domain.

The Software Engineer must now organize the information captured in the domain model

into a form that can be stored in the knowledge base of the particular DOACS. The

organized abstractions become the domain's reuse infrastructure design. The infrastructure

design is similar to Arango's reuse infrastructure specification that acts as "an architecture

for reusable information" (4:82). In designing the reuse infrastructure, current software

engineering methods should be used; however, these methods must fit into the object-

oriented paradigm. Also, the Software Engineer must understand and follow any other

design requirements (e.g., organization-specific design standards).
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The implementation of this process is very system-specific; however, the results of

this activity will usually form, as a minimum, an abstract syntax tree with each node rep-

resenting some abstraction and each leaf representing a component implementation. More

sophisticated DOACS will require more sophisticated results like implemented domain-

specific languages, domain semantics (e.g., a domain rule that component A must follow

component B), domain-specific software architectures, and methods for defining how the

components are presented to the Application Specialist during the composition process.

3.5.4 Implement Reusable Components. Now that the reuse infrastructure has

been designed and the component behaviors have been defined, the individual components

must be implemented (transformed into the required "executable" form). Component

implementation is a translation of each component from its abstract definition into a form

representable in the knowledge base and executable by the DOACS.

The Software Engineer implements each abstraction organized in the domain infras-

tructure design. The implemented abstractions become part of the reuse infrastructure

implementation and, when all of them are done, domain implementation is complete. Be-

fore implementing the components, the specific software development tools and the imple-

mentation requirements must be identified.

The selection of software development tools will depend on the software implemen-

tation languages accepted by the DOACS. The Software Engineer should use whatever

tools are available to implement the components. Commercial compilers and software de-

velopment environments can provide the necessary utilities to perform reuse infrastructure

implementation.

The implementation requirements constraint indicates the constraints imposed by

the DOACS, most of which result from the requirements of its knowledge base. These con-

straints must include a formal description of the software architectures supported by the

DOACS and the specific procedures for representing component implementations within

the knowledge base. The implementation requirements should also identify different meth-

ods to model the component abstractions. For example, a stack data type can be imple-

mented as an array or list with various advantages to each of these implementations. Part
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of the implementation requirements should detail the procedures for selecting the desired

implementation method for different abstractions.

A priority list of the order to implement the components may also be included in the

implementation requirements. The Application Specialists may require some components

immediately, while other components may not be needed until well in the future. Using

priorities, the Software Engineer could implement components in order of their importance

to the Application Specialist. This allows the DOACS to support application composition

before complete domain implementation is finished.

3.5.5 Evaluate Domain Development. In this activity, the Software and Domain

Engineers evaluate the outputs of the previous activities. This activity covers a broader

scope than the others because, while the others are focused on one area of domain analy-

sis/implementation, this activity has relevance to the entire knowledge base process from

start to finish.

The results of each of the other four activities should be evaluated as they are gener-

ated, both individually and along with results from previously completed activities. Also,

when all the results are completed, they should again be evaluated to ensure consistency

and completeness. This activity should trigger one or more of the previous activities when

errors or better ways to model/implement the domain are discovered. Each activity could

include their own evaluations as part of their normal execution, but we have made the

evaluation a separate activity to provide a way to evaluate the results of all the activities

in reference to one another.

Although we have placed this activity at the end of our process, it is involved at

each step of the knowledge base population process. As the domain model and knowledge

base evolve, this activity becomes more important in maintaining the integrity of the

applications they generate.

An input to this activity that is not specifically shown on Figure 3.4, but is worthy

of mention, is from the Application Specialist. As the Application Specialist composes

applications, several problems may be identified (such as missing components, errors in

components, or problems with component interfaces). The Domain Engineer then evaluates
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the problems and makes any necessary changes to the domain model or reuse infrastructure.

Another input from the Application Specialist is the identification of applications that

should be incorporated into the knowledge base as primitive components. These reusable

applications are discussed in the next section.

3.5.6 Reusable Applications. Along with the components identified during the

domain analysis, the Application Specialist may want to use an existing application (or

part of one) as a component in a new application. We call this reused application a

reusable application (although all applications are reused in the sense that they can

be reloaded and modified). When the Application Specialist is choosing components to

use in composing an application, these reusable applications should be included in the list

of choices. It is possible that a DOACS could implement reusable applications without

any special processing; however, in general, we expect that these applications will need to

be identified for reuse and somehow "processed" by the Domain and Software Engineers.

This processing is completely dependent on the specific DOACS, and there could even be

different methods for accomplishing this within the same DOACS.

The creation of a reusable application may be simple or complex, depending on the

specific situation and th- capabilities of the system. Primitive application creation could

consist of stripping off desired data "sources" and "sinks" (components that generate or

consume data that we now want to leave off the application) and identifying the interface

to the reusable application that remains after these components are removed. If the spe-

cific DOACS does not have the capability of storing and using a reusable application like

this, then the Software Engineer may have to somehow combine all the behaviors of the

components of this application into this new component in the same manner as those iden-

tified in the domain analysis. Also, depending on the specific DOACS, it may be required

that this new primitive application be added into the reuse infrastructure design.

Along with making the reusable application available as a new component to the

Application Specialist, the Domain Engineer should consider adding it to the domain

model (in the Create/Evolve Domain Model activity). If the reusable application is added,

then its behavior should be captured in the Abstract Component Behavior activity and

3-20



consideration given to implementing it as a single component (rather than a collection of

components).

3.6 Geneal Process Support and Constraints

There are many reasons for having a general knowledge base population process. One

reason is to provide a framework to use when developing tools and utilities that apply to

populating many knowledge bases. Is there justification for developing a general process?

How "general" is this process? This section is our attempt to support our development of

a "general" knowledge base population process.

We have illustrated a possible knowledge base population process. We attempted

to clarify the process by identifying the methods and constraints for each activity; they

change depending on the specific application domain and the specific DOACS used to

develop applications. This versatility, tying each of these traits to the characteristics of the

domain or system, adds justification to the general applicability of the process. Although

the domain model resulting from the domain analysis is independent of the knowledge base

constraints, the model's structure and the domain analysis method used to create it can

differ for each domain. This characteristic is captured in the first stage of our process. The

same idea applies to building the reuse infrastructure. The infrastructure can be different

for each DOACS. We do not suggest that this process will support every application domain

or apply to all DOACSs (it has not even been shown that every domain can be modeled

using current modeling techniques). However, we do suggest that this process will support

many application domains and many systems.

There are some characteristics that must exist in the domain and the system. The

system's knowledge base must have the capability to represent an organized collection of

reusable software components and the rules for their composition. We described this frame-

work in Section 3.2. The domain must be somewhat established (i.e., some structure must

exist for building applications in the domain, either informal or formal). This implies that

the domain is mature enough to have existing applications that could provide important

information during a domain analysis.
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We have developed our process with the goal of future automation. Constraints

placed on each activity (such as knowing the particular software architecture) have been in-

cluded only where necessary. However, software engineers may be concerned about changes

made to these constraints while a domain model and knowledge base are evolving. For

example, suppose we modify our knowledge base structure after already implementing sev-

eral domains. What impact does this have on the knowledge base population process?

Will we have to respecify and re-implement the domain model? Are we forced to stick to

the original constraints? Although a more general knowledge base population process may

exist, we feel that our process can handle these problems if the proper attention is given

to the definition of each constraint.

3.7 Summary

A formal process for populating a knowledge base results when we apply the outline

described in this chapter to a candidate DOACS. The process that we have developed

incrementally evolves the domain - both the domain model and the reuse infrastructure

in the knowledge base. The process explicitly captures the role of feedback through the

evaluation of each activity. When the process is first started for some application domain,

most of the effort will involve the Create/Evolve Domain Model and Abstract Component

Behavior activities (activities one and two of Figure 3.4). As the process continues, effort

will increase in the Design Reuse Infrastructure and Implement Reusable Components

activities (activities three and four of Figure 3.4). The attention given to the Evaluating

Domain Development activity will depend on the particular requirements for testing (which

usually relates the size and complexity of the domain).

Although we have developed a general process, software engineers need to conduct

more application-oriented research into knowledge base population to gain more experience

and develop tools to assist in evolving domain models and structuring knowledge bases.

The DOACS concept has not yet been proven in the software engineering community. Our

research efforts and the efforts of other researchers will help to improve these software

development technologies.
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IV. Instantiation of the Generic Knowledge Base Population Methodology for

Architect

4.1 Introduction

In the previous chapter, we presented a generic knowledge base population process

(Figure 3.4) that we maintain could be tailored to any DOACS. In this chapter, we in-

stantiate this process for a specific DOACS: Architect 1 . However, before presenting our

instantiation of the generic population process, we must first describe Architect.

4.2 Architect

Figure 4.1 (reprinted from Chapter I) shows a general overview of the current version

of Architect 2. The rounded boxes are tasks accomplished by the Application Specialist,

Domain Engineer, and Software Engineer; the square boxes are components of Architect.

Architect runs within the Software Refinery TM  development environment created by

Reasoning Systems, centered around a Lisp-based specification language called REFINE.

The REFINE language "provides an integrated treatment of set theory, logic, transfor-

mation rules, pattern matching, and procedure" (34). Programs in REFINE consist of

executable rules and functions that query and modify a powerful object base; in addition,

there are many built-in functions to aid in manipulating this object base. The user de-

fines these rules and functions at the specification level, so REFINE supports programming

with "executable specifications". Also included in REFINE is a syntax definition system,

called DIALECT, which allows users to easily design and implement new languages, through

grammar definitions. These grammars can be used to populate the REFINE object base by

parsing in text files, an ideal way to implement domain-specific languages.

Architect fits well into the DOACS concept presented in Chapter III. It is a domain-

oriented application composer that has a knowledge base, called the Technology Base, to

encapsulate domain knowledge. Through the Architect Visual System Interface (AVSI),

the Application Specialist can view domain documentation, compose or load an application,

11n Chapter IV of (35), Capt Sandy instantiates this same process for a DOACS called Automatic

Programming Technologies for Avionics Software (APTAS).
2A summary of other research accomplished concurrently with this effort is in Chapter I.
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Figure 4.1 General System Overview of Architect

check the semantics of the application, execute the application, and save the application.

An application is composed of subsystems, and subsystems are composed of primitives
and/or other subsystems. The Working Technology Base is contained in the REFINE

object base (non-persistent between REFINE environment sessions); the Saved Technology
Base currently consists of a directory structure containing text files3. Architect does not

yet have a sophisticated code generation capability (applications can only be "run" within

the scope of Architect); however, it is expected that this capability will be added in the

future.

Currently, Architect has only one architecture available, which is based on the OCU

model. This model is summarized in the following section, followed by a section describing

the Architect implementation of this model. Finally, a description of how to create an

application is given.

3anformation on implementing the Saved Technology Base in a database is contained in (7).
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4-2.1 The Object-Connection-Update (OCU) Model The OCU model (20) was

developed by the Software Engineering Institute (SEI) as a part of their Software Architec-

tures Engineering Project. In the OCU model, applications consist of a set of subsystems

(see Figure 4.2) that contain:

"* A Controller: manages the objects in the subsystem. A subsystem's controller can be

accessed through the following procedures: Update, Stabilize, Initialize, Configure,

Destroy.

"* An Import Area: the collection of the data needed by the objects in the subsystem.

It consists of a collection of the input-data of all the objects and imports of all the

subsystems that are contained in this subsystem.

"* An Export Area: the collection of the data produced by the objects in the subsystem.

It consists of a collection of the output-data of all the objects and exports of all the

subsystems that are contained in this subsystem.

"* Objects and other subsystems: subsystems can be nested to any depth.

Figure 4.2 OCU Subsystem

"An object models the behavior of a real-world or virtual component and maintains

state. All algorithms that are necessary to model the behavior of the componeDt are

localized in an object" (20:19). Objects have:

* An Interface: consists of five procedures:
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- Update: calculates the new object state data based on the current state and

input values.

- Create: creates a new instance of an object.

- SetFunction: switches or redefines (by coefficient modifications) the update pro-

cedure.

- SetState: modifies the object's state data directly.

- Destroy: deallocates the object.

"* Input-Data: data provided by other objects used to calculate the new state data.

"* Output-Data: data resulting from an object's state calculations that is externally

visible.

"* Attributes: data that represent characteristics of an object.

"* Current-State: data representing the current condition of the object.

"* Coefficients: data used in the algorithms for calculating the object's state data.

"* Constants: data that represent unalterable object attributes.

It is important to note that while the SEI developed the OCU model, to our knowl-

edge they have not developed any automated tool support systems for this model. Because

of this, there are some areas of the OCU model that need more detail in order to automate

this model. For example, exactly what form an object's State-Data takes is not defined.

Therefore, during AFIT's automation of the OCU model, these areas had to be defined

to a greater level of detail: these areas have caused some problems in the Architect OCU

implementation. Some of these problems are described below and in Chapter V because

they affect the implementation of a domain in Architect.

4.2.2 OCU Implementation in Architect. Because there are some areas of the

OCU model that are not completely defined to a sufficient level of detail to be automated,

and because the integration of the OCU model in any DOACS requires that implementation

decisions be made, the OCU model implemented in Architect differs somewhat from the

OCU model described above. In this section we identify the important differences.
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A graphical representation of the structure of applications is shown in Figure 4.3. In

the notation used in this figure4 , the boxes represent object classes (there may be many

objects of these types) and the lines represent associations between objects of the connected

classes. Black circles on the associations show that there can be one or more of that type

of object on that end of an instance of that association. An object class has three parts:

name, attributes, and operations, which are divided by lines.
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Figure 4.3 Architect e mplementation of the OCU Model

This figure shows that an application controls one or more subsystems, subsystems

control one or more primitives and/or subsystems (shown by the circular association "con-
trols"), and a subsystem is connected to one or more (possibly including itself) subsystems

through import/export connections. An application or subsystem can control several sub-

systems/primitives, but each subsystem/primitive can only be controlled by one applica-

tion or subsystem. The export of one subsystem can be connected to several imports of

other subsystems, but each import can only be connected to one export.

There are several differences between this model and the OCU model described

in (20). Here, an application object is specified and has an update algorithm. The Stabi-

lize, Initialize, and Configure procedures for a subsystem are not implemented at this time

"The object modeling notation used for this figure is defined in (16).
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and are areas for future research5 . The controller function of the subsystem is contained

in the update algorithm. Orý.:.ects are renamed to primitives. The create and destroy

procedures for subsystems and primitives are not needed since the REFINE object base is

persistent between executions (these objects do not need to be recreated in the object base

every time the application is executed). The attributes, current.state, and constants for

an object are all implemented as attributes in the primitives. Also, a description and icon

were added to applications, subsystems, and primitives to allow domain visualization and

a method for the Domain Engineer to pass information about the primitives to the Appli-

cation Specialist. The differences that most affect this research are the lack of the Initialize

procedure for subsystems and the implementation of object attributes, current-state, and

constants as primitive attributes; these differences will be discussed in detail in the next

chapter.

AtgU.1Du

Figure 4.4 Primitive Data-Flow Diagram

Figure 4 4 shows a data-flow diagram for a primitive. Note that a primitive can

change its own Attributes through the update algorithms. The Input-Data is provided

through the connections to other primitives (i.e. it is copied out of other primitive's

Output-Data). The SetState procedure can modify an object's Attributes directly, while

the SetFunction procedure changes which Update-Algorithm the primitive uses to update

its state'. The SetFunction procedure can also be used to change the values of the Coeffi-

'In Architect, the imports and exports are actually implemented as separate objects with associations
tying them to their subsystems, but that is not important at this level of abstraction.

61n his research, Welgan added the capability for Architect to execute time-driven and event-driven
applications. When using this capability, each primitive must have its own SetState procedure, and it is
this procedure, not the Update-Algorithm, that modifies the Attributes and sets the Output-Data. It can
also subsume some or all of the functionality of the Update-Algorithm.
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cients. The Input-Data is supplied by the subsystem from its imports and the output data

is incorporated into the subsystem's exports.

4.2.3 Creating an Application. Figure 4.5 shows the main control panel of AVSI.

The buttons on the upper portion provide access to Architect's capabilities, while the

Message Window reports success or failure (with error messages) of attempted operations

along with other helpful information. Each of the buttons bring up other windows to

accomplish its mission.

DommkSho Lad Edit ehec C" Tat DIMecte
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Figure 4.5 The Architect Control Panel

An application is built by adding subsystems to it and then building each of those

subsystems. An example of the windows used to choose primitives to compose a subsystem

is shown in Figure 4.6. The window on the right shows the available primitives for the

chosen domain (in this case the digital circuits domain'); the window on the left shows

the current subsystem (in this case a subsystem that provides an exclusive-or functionality

using four NAND gates). Primitives are added to the subsystem by simply moving them

(with a mouse) from the right window to the left. Subordinate subsystems can also be

added in the left window (through a menu). It is important to note the ease of adding

primitives and subsystems to applications-it only takes a few clicks on the mouse.

7 Information on the digital circuits domain implementation in Architect is contained in (3).
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Figure 4.6 XOR Primitives and Circuits Domain Technology Base

After subsystems and primitives are added to an application, the connections be-

tween the subsystem/primitives need to be captured. The Application Specialist specifies

these connections in two steps: connections between primitives in the same subsystem and

connections between subsystems. An example of the method for the first step is shown in

Figure 4.7. Note that proper positioning of the primitive icons in this screen can provide

a visual cue to the function of this subsystem (in this case, an "exclusive or").

Finally, the update algorithms for the application and all subsystems need to be spec-

ified. This specification is also accomplished in a visual environment'. These algorithms

control the order that the update functions of all subordinate subsystem/primitives are

called (along with two other functions, SetState and SetFunction, that will be explained

later). Conditional (if) and looping (while) statements can be included in these algorithms.

8See (9) for more information on how update algorithms are specified.
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4.3 Technology Base Population Methodology for Architect

Now that Architect has been briefly explained, the instantiation of the generic Knowl-

edge Base Population process described in Chapter III can be presented. This ins : atiation

is shown in Figure 4.8.

4.3.1 Domain Analysis. The most obvious change in this figure from Figure 3.4

is that activities one and two are "grayed out" along with their properties (inputs, outputs,

methods, and constraints). They are grayed out because, as stated in Chapter III, these

two activities comprise the Domain Analysis process, which is independent of a particular

DOACS (in this case Architect). Since these activities are independent, there should be no

changes to them or their properties during the instantiation of the process for a particular

DOACS.

Actually, the whole generic knowledge base population methodology is designed to be

instantiated for a particular domain analysis method and DOACS. However, the indepen-

dence between the domain analysis and domain implementation phases of this methodology

allows us to instantiate activities three, four, and most of five for a given DOACS inde-

pendent of any particular domain analysis method, while activities one, two, and part of
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Figure 4.8 Technology Base Population Process

five can be instantiated for a given domain analysis method independent of any particular

DOACS (actually, this is easier said than done, as explained in the next chapter). In this

chapter, we only discuss the instantiation of this methodology for a particular DOACS,

namely Architect.

Different domain analy.-s approaches can be used to implement different domains

in the same DOACS, resulting in different instantiations of activities one and two. In

fact, the domain analysis approach used should be chosen, at least in part, based on the

characteristics of the domain to be analyzed. Another basis for which approach to choose is

the availability of automated domain analysis tools that implement different approaches.

The ideal situation would be to have an automated tool for domain analysis, and then

create another tool that would transform the outputs of this domain analysis tool into the

form required by the DOACS knowledge base under consideration. The domain analysis

approach used for this research is described in Chapter V along with the implementation

of a particular domain.
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As the software engineering community continues to investigate domain analysis,

standardized formats and automated tools to generate domain information in these for-

mats should appear. One prototype domain analysis tool is OORA (Object-Oriented Re-

quirements Analysis) Automated Knowledge System (OAKS) (10). OAKS was designed

to capture domain information without regard to any particular DOACS. Using this tool,

the Domain Expert defines object classes and the interrelationships between these classes;

the advantage is that OAKS then checks the consistency and completeness of the entered

information and displays any problems found.

4.3.2 Domain Implementation in Architect. Activities three and four comprise

the domain implementation process and are instantiated for Architect in Figure 4.8. The

next two sections describe these activities.

4.3.2.1 Implement Domain Model. Activity three in Figure 4.8 is the first

step in implementing a domain in Architect. This activity implements the structure of

the domain in the Technology Base. Currently, the Software Engineer accomplishes this

activity by creating text files. There is ongoing research, described in (7), to populate

the Technology Base from a database which, if implemented, will change the form of this

activity. The type and amount of required information to implement a domain model will

not change, but the method in which this information is input will change (i.e., filling in

database forms instead of editing text files).

There are two constraints to the Implement Domain Model activity. The first is

Architect's Technology Base structure. This constraint imposes the format for domain in-

formation that the Technology Base requires and requires that the implementation be ac-

complished using the REFINE language. The second constraint is the Design Requirements

placed on domains implemented in Architect. Two examples of these Design Requirements

for Architect are the OCU model and the file structure conventions listed in Appendix C.

More examples of these two constraints are described later in this section, starting with

the REFINE domain model.
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A domain model in REFINE is defined in (34) as a class structure with attributes;

the domain specific language (DSL) and visual specification language (VSL) (outputs of

activity three in Figure 4.8 are called grammars and are not considered part of REFINE

domain model. Our definition of a domain model in Chapter III, however, does include

the DSL and VSL. In this section, as well as in Figure 4.8, we will use the words "REFINE

domain model" to differentiate between these two uses of the term domain model.

REFINE Code Required to Implement a Domain in Architect. To

implement a domain in Architect, the Software Engineer writes REFINE code to describe

the domain in five parts. These five pieces of code:

1. declare the domain model classes

2. define the attributes for the domain classes

3. declare domain-specific types and functions

4. define the DSL

5. define the visual objects that are parsed in by the VSL (we refer to this code as

simply the VSL)

6. declare the icon objects

The code that defines the REFINE domain model classes for the Digital Logic domain

is shown in Figure 4.9. The primitive classes are capitalized to highlight them. Primitives

in Architect are created from these classes. The three intermediate classes (Gates, Input-

outputs, and Common-Circuits) are not strictly needed; all the primitive classes could

be direct subclasses of Circuits. However, they do provide grouping information for the

primitives when they are displayed in the domain Technology Base window (see the right

half of Figure 4.6). Also, they aid in understanding the structure of, and logical groupings

in, the domain. For example, it is easy to visualize an object model tree like Figure 4.10

from this code. In this figure, the link between classes denotes generalization (the upper

class is a generalization of the lower classes) with inheritance (16). In Architect, primitives

can only be instantiated from leaves in a tree like this one (this is an example of the Design

Requirements constraint shown in Figure 4.8 for activity three).
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var Circuits objoct-class subtyp.-of Prinitive-Obj

var Gates object-class subtype-of Circuits
var AND-GTE : object-class stbtype-of Gates %prim
vat 01-GATE : object-class subtype-of Gates Zpria
var 10T-GATE : object-class subtype-of Gates %prim
var MAID-GATE : object-clio subtype-of Gates %prim
vat NO-GATE : object-class subtype-of Gates %prim
var Input-Output object-class subtype-of Circuits
var SWITCH object-class subtype-of Input-Output %pris
var LED object-class subtype-of Ispat-Output %prlm
var Comon-Circuits object-class subtype-of Circuits
var COUNTER object-class subtype-of Common-Circuits %prim
var DECODER object-class subtype-of Commoa-Circuits %prim
var HALF-ADDER object-class subtype-of Comon-Circuits %prim
var Jx-FLIP-FLOP object-class subtype-of Comon-Circuits %prim

var KuX object-class subtype-of Comsn-Circuits %prim,

Figure 4.9 Architect's domain class code for the Digital Logic domain

The REFINE domain model is not complete, however, until the attributes of these

classes are defined. Although inheritance is included in the REFINE object base, Architect

requires that all attributes be pushed down to the primitive class level. Therefore, any

attributes identified in the domain analysis for intermediate classes must be repeated in

the lower classes. The code that implements attributes for the And-Gate class is shown

in Figure 4.11. Each primitive class is required to have a REFINE attribute (implemented

with the "map" structure) called Coefficients to implement the coefficient part of the OCU

model (different from OCU attributes). The rest of this code implements the attributes

identified during the domain analysis for the And-Gate (and all higher classes).

The domain-specific types define the type of information that will be passed between

the primitives while the domain-specific functions are functions available for use by the

primitives in their update functions. One main use of a domain-specific function is to add

methods to manipulate the domain-specific types. There are no domain-specific types or

functions for the Digital Logic domain, although more sophisticated domain will probably

have some. Examples of these types and functions are presented in the next chapter during

the discussion of the implementation of DSP domain.
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Figure 4.10 Digital Logic Class Structure

In this example, the And-Gate class has attributes of Delay, Manufacturer, Mil-Spec

and Power-Level. Each attribute has a type and default value; this default value may be

modified by the Application Specialist during composition. Each attribute can also have

a description (the text in quotes above the attributes) that provides information to the

Application Specialist when he/she is changing the value of that attribute. Each primitive

class also has an attribute called "name", but it doesn't appear here since this is a default

attribute for all REFINE objects.

After establishing the REFINE domain model, there are three more items that need

to be defined for every domain. The first is the Domain Specific Language (DSL). Using

this language (implemented through a grammar in REFINE), applications can be written to

or parsed from text files. In fact, the Application Specialist could specify an application by

creating a text file in the format specified by the DSL and then use the REFINE grammar

tool called DIALECT to load the application. DIALECT would read the file and create the

described objects in the Technology Base'. This was the method used by the Application

Specialist to enter applications before AVSI was created; however, it is not as intuitive as

AVSI and requires a more in-depth understanding of how Architect works. Figure 4.12

shows the portion, called a production, of the Digital Logic DSL for the And-Gate primitive

'An example of one of these text liles is contained in Appendix B.
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var AID-GATE-COEIFICIEUT• sap(AID-GAIT, set (name-value-obj))
computed-using

AND-GATE-COEFFICIENTS(x) = {}

"The delay between the time the gate recieves its

input values and when it sets its output"
var AID-GATE-DELAY : map(ID-GATE, integer)

computed-using

AID-GATE-DELAY(x) a 0

"The Rame of the company that manufactured the gate"
var AID-GATE-•ANIFACTUER : map(AID-GATE, string)

computed-using

AID-GATE-UNAIFACTTJRERWz

" true -> the gate meets exacting military specifications
false -> the gate only meets IEEE specifications"

var AID-GATE-NIL-SPEC? : map(AID-GATE, boolean)
computed-using

AID-GATE-MIL-SPEC?(x) - nil

"The amnount of power the gate requires"
var AID-GATE-POWER-LEVEL : map(AID-GATE, real)

computed-using
AID-GATE-POER-LEVEL(x) a 0.0

Figure 4.11 Attribute code for the And-Gate primitive class
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And-Gate-Obj : ("and-gate" name

(["delay:" and-gate-obj-delay]
[(["is ail-spec" !! and-gate-obj-mil-spoc?] I

["not ail-spec" -!: and-gato-obj-ail-spoc?])]
["aanulacturer:" and-gate-obj -manufacturer]
["power level:" and-gate-obj-poweor-level] } I
builds And-Gate-Obj

Figure 4.12 And-Gate portion of the DSL

class. Comparing this production with the attributes for the And-Gate class shows that

the DSL does not add any more information above that provided by the REFINE domain

model-the attributes of the primitive class are just repeated in a different form. This is

the case for all primitive classes implemented in Architect.

The second item that needs to be defined is a file that, when parsed in through

the grammar that implements Architect's Visual Specification Language (VSL), creates

the visual specification objects that AVSI requires to manipulate domain primitives. The

acronym VSL is used (imprecisely) to refer to this code, although this code is really parsed

through the already defined VSL grammar (a permanent part of Architect and not shown

here). This VSL is used to load the information necessary to visualize the domain. An

example of the portion of the Digital Logic file parsed by the VSL that implements the

And-Gate primitive class visualization is shown in Figure 4.13. The "Icon" section shown

in this figure is the same for every primitive, except for "and-bitmap-l" and "and-bitmap-

s" which are the specific names of the icon objects for this primitive. The Edit section

lists the attributes of the primitive class whose values can be changed by the Application

Specialist (the attributes for the And-Gate primitive class were defined in Figure 4.11). If

an attribute is not listed in this section, then this attribute will not be listed when the

Application Specialist selects the menu choice that allows the values of attributes of a

primitive to be changed. The decision whether or not to enter primitive class attributes

in this section is based on information provided by the Domain Expert during Domain

Analysis; in other words, the Domain Expert must specify which attributes the Application

Specialist should be able to change.
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attributes for AID-GATE are

Icon :
label - class-aad-name;
clip-icon-label? - false;
border-tkickness a 0;
bitmap4icoa-l = aad-bitmap-1;
bitmapdicoa-s a and-bitmap-s

Edit :
name symbol;
delay integer;

manufacturer : string;
mil-spec? : boolean;

power-level : real
end;

Figure 4.13 And-Gate portion of the VSL spec

The third item that needs to be defined for every domain is the icon object definitions.

Architect creates the icons it uses from bitmaps, which are pixel-by-pixel representations

of a graphic. The only information needed for these definitions is the icon object names

(matching the ones entered in the Edit section described above) and the file names for the

icon bitmaps. The portion of the code that creates these icon objects for the And-Gate is

shown in Figure 4.14.

var and-bitmap-i :any-type a Ccw: :read-bitmap( "CIRCUITS-TKCE-BASE/andgate.icon-l"))I
var and-bitmap-s any-type - (cw: :read-bitmap( "CIRCUITS-TECH-BASE/andgate.icon-s"))

Figure 4.14 And-Gate primitive class icon object definitions

4.3.2.2 Create Primitive Classes. After the domain model is implemented

as described above, the primitives need to be implemented. This implementation is activity

four in Figure 4.8. In this activity, the behavior of the primitives will be implemented in

an executable form. It is these behaviors that describe the functionality of the domain.

As with activity three, the Software Engineer currently accomplishes this task by creating

text files.

The two constraints on this activity (shown by the two arrows going into the top of

the activity box in Figure 4.8) are the output of activity three and the requirements of

Architect, REFINE, and the OCU model. The REFINE domain model defines the names
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of the primitive classes and attributes; the same names must be used when implementing

the primitive classes. An example of an OCU model requirement is that every primitive

must have at least one update function. Several other Architect, REFINE, and OCU model

requirements are described in the following paragraphs.

REFINE Code to Implement Primitives. The information needed to

implement a primitive class consists of: inputs and outputs (name, type, and category),

a description, at least one update function, and an icon for the class. The first three

are implemented by the Software Engineer by writing REFINE code; the icons are created

outside of the REFINE environment.

The inputs and outputs are the primitive's interface to the rest of the application.

When a primitive is updated, it takes the current values of the inputs, along with the values

of the coefficients and attributes, and uses the specified update function to calculate the

outputs (see Figure 4.4); the update function(s) encapsulate the behavior of the primitive.

The icon, which has two sizes (large and small), provides a visual cue for the function of

the primitive class, as well as a method to use the mouse to add new primitives to an

application. The icons for the Digital Logic domain were shown in Figure 4.6.

Figure 4.15 shows the portion of code that implements the And-Gate primitive class.

This code is separated into three parts: inputs and outputs, primitive class descripticn,

and update function. The description can be viewed by the Application Specialist during

the composition process. The description for the And-Gate piimitive is intuitive, but in

more complicated primitives the description can provide the Application Specialist with

useful information, including design information that affects how the primitive behaves.

There is only one update function for the And-Gate primitive class, called Updatel, but

if more than one existed it would be listed here. The last few lines in this figure set the

default update function; this default can be changed by a SetFunction statement in the

parent subsystem's update algorithm during execution.

The icons for primitive classes are currently made from bitmaps; the large from a

64x64 bitmap and the small from a 32x32 bitmap. The Software Engineer creates these

bitmaps using any drawing tool that will output these sizes of bitmaps; therefore, this
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%inputs/outputs- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

var AID-GATE-OBJ-IIPUT-DATA :set (import-obj)
{set-attrs (zako-object('iuport-obj),

'import-name, 'jul.
'imprt-ctgry, 'signal,
'import-type-data, 'boolean),

set-attrs Cmake-object('import-obj),
'import-nam. 'in2,
'import -category, 'signal,
'import-type-data, 'boolean)}

var AND-GATE-OBJ-OUTPUT-DATA : set (export -obj)
{set-attra (inake-object('.xport-obj),

'export-name, 'out 1,
'export-category, 'signal,
'export-type-data, 'boolean) }

%not description -------------------------------------------------------------

form set-and-gate-description
re: :zl-documentation~find-object('re: :binding, 'AND-GATE-CBJ)) <

"The and gate takes two inputs and combines them together (after
the appropiate delay time) as follows:

inputi I input2 I output
-I------------------

T I T I T
T I F I F
F I T I F
F I F I F

%update functions ------------------------------------------------------------
function AID-GATE-GBJ-UPDATEl (subsystem :subsystem-obj,

and-gate :AND-GATE-OBJ)

let (ml : boolean. - get-import('inl, subsystem, and-gate),
Wn boolean - get-import('in2, subsystem, and-gate),

the-output : boolean - false)

the-output <- iml & in2;
set-export~subsystem, and-gate, 'outi, the-output)

%other update functions here, if any

var AND-GATE-ODJ-UPDATE-FUNCTION : inap(AND-GATE-OBJ, symbol)
computed-usinig

AIiD-GATE-OBJ-UPDATE-FUNCTIOI (x) = 'AND-GATE-ODJ-UPDITEl

Figure 4.15 And-Gate primitive class code
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information needs to be included in the domain analysis results. The bitmaps currently

used in Architect were created by the OpenWindows TM IconEdit tool shown in Figure 4.16.

There are two sizes of icons because Architect windows can be rescaled to the smaller size

when the icons start running off the edge of the screen. There are a few default icons that

are supplied with Architect to aid the Software Engineer and standardize the visualizations

of some of the common functions that appear in many domains'".

-. mminMeee- - - -

F6tid4.3.3 Evale D n D

I lstofth dfigulArehi4.16 Iconsdit cotoole soing th(Ad-at)io
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mentation process for the given DOACS. Other inputs into the instantiation of this activity

is the standards of the organization and what automated tools are available.

This activity has one category of constraints, Test & Evaluation Requirements, which

includes requirements from the domain analysis method and the DOACS, as well as or-

ganizational requirements and automated support requirements. An example of a domain

analysis method requirement is a consistency check that ensures that ell domain model

object classes have a name and that these names are unique. An example of an organiza-

tional requirement would be to have all activity outputs reviewed by some quality control

agent. Architect has several consistency checking requirements, but fortunately, most of

them can be implemented automatically in REFINE. The most important non-automated

consistency checking requirement for Architect is that the name of the primitive must be

appended to the beginning of the attribute name when an attribute is implemented for a

primitive (see Figure 4.11).

Test & Evaluation tools include both domain analysis tools and domain implemen-

tation tools. An example of an automated domain analysis tool is OAKS (described in

Section 3.3). A special feature of OAKS is that it maintains a list of items the Domain

Engineer has to enter/deconflict before the domain is consistent and complete. An example

of a domain implementation tool is Architect's lest Primitive, described below.

Domain Implementation Evaluation. The evaluation of a domain

implementation in Architect consists of three steps: evaluate the primitives, evaluate the

domain model and primitive interfaces, and compare the domain implementation to the

domain analysis results. The rest of this section describes these three steps.

As mentioned above, Architect has a tool to help evaluate individual primitives,

which was implemented as a part of this research effort. This tool, called Test Primitive,

is intended for use by the Software Engineer in testing individual primitives. It is provided

on the Architect Control Panel for ease of use in this research environment, but would

be removed if Architect was to be installed at a production site since use of this function

should not be provided the the Application Specialist.
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In Test Primitive, the Software Engineer can choose an individual primitive and test

its update function(s). This is accomplished by providing windows in which the Software

Engineer can change the values of the primitives attributes, inputs, and current update

function directly, execute the primitive's specified update function, and then display the

produced outputs. Of course, the use of this tool does not help if the Software Engineer

does not have correct sample data to comp-xe to the Test Primitive results; in other words,

he/she must know what outputs to expect, or he/she will not know if they are correct.

This sample data should be compiled by the Domain Engineer. An example of the use of

the Test Primitive tool is discussed in section 5.5.2.

Although Architect does not have any specific tools to evaluate the domain model and

primitive interfaces, the easy prototyping and execution capability of Architect provides a

simple and convenient way to test them. After each individual primitive has been tested,

the Software and Domain Engineers should compose some simple applications to test the

interfaces between the primitives. It is impossible to compose all possible applications

(since there are an infinite number of them), but enough should be implemented so that

every primitive has been used and the Engineers feel confident that the domain semantics

have been implemented correctly. During the composition and execution of these simple

applications, the Software and Domain Engineers evaluate the domain structure as a whole,

looking for things like missing primitives, conflicting primitives, primitives that overlap in

functionality, etc.

Although there are many parts of the Evaluate Domain Development activity that

can be clearly specified (such as specific consistency checks and automated tools described

above), the Software and Domain Engineers should take a step back from the specific

activities of this process and look at the domain analysis and domain implementation

products as a whole. For the Software Engineer, we recommend that he/she take the time

to sit down with the domain analysis and domain implementation results and compare

them. He/she should not concentrate on the primitive behaviors, since they were tested

already. The Software Engineer should, however, make sure the domain structure and

interfaces are consistent and complete.
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4.3.4 Reusable Applications. As described in Chapter III, there are two main

methods to add applications into a knowledge base as new primitives. The first is to

provide the application as it exists (with all its sub-components and connections) to the

Application Specialist as a new reusable component and allow him/her to compose it into

new applications just like the other components. The second is to feed this application

back into the domain analysis process, abstract out its functionality, and then implement a

new component with this behavior. The second method should be possible in any DOACS

that fits into the G-DOACS framework (Figure 3.1); however, the first is more consistent

with the reuse principle of DOACSs (and should be easier).

We, :.. see the results of the second method in the Digital Logic domain in Architect.

In Figure 4.9 there are three intermediate classes: Gates, Input-Output, and Common-

Circuits. During the domain analysis process, the first primitives in the Gates and Input-

Output classes were identified. The primitives in Common-Circuits were not identified

until later when the domain had been in use for some time. In fact, the functions of the

primitives were first built into applications by using the original set; then, as it became

apparent that the functions of these applications would be used over and over, the functions

of these reusable applications were implemented as individual primitives.

Architect cannot implement reusable applications using the first method (although

there is a method that is somewhat similar using what are called generics (33)). A better

way to implement the primitives in the Common-Circuits would have been to build them

into a subsystem, test this subsystem, and then make it available to the Application

Specialist as a new reusable component. This capability could be easily added to Architect;

however, it would need to be integrated with the new data base implementation of the

Technology Base being developed as a part of (7).

4.4 Summary

The purpose of this chapter was to provide a formal method for implementing a

domain in Architect. This was accomplished by (after a brief description of Architect

and its use of the OCU model) instantiating the general population method presented in

Chapter III. This method includes implementing the domain model and then implementing
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the individual primitive classes. These two activities are followed by a feedback loop in

which the primitives and the domain as a whole are evaluated and compared to the domain

analysis results, fixed, and verified and validated. Also, this feedback loop provides for the

evolution of both the domain analysis results and the domain implementation.
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V. Implementing the Digital Signal Processing (DSP) Domain in Architect

5.1 Introduction

In this chapter we discuss the analysis and implementation of the Digital Signal Pro-

cessing (DSP) domain accomplished as a part of this research effort. We implemented the

DSP domain in Architect to validate the Architect instantiation (presented in Chapter IV)

of our generic knowledge base population methodology (presented in Chapter III). There

are several reasons for this discussion: to show an example of domain analysis, to show

an actual Architect domain implementation, and to provide a forum for explaining some

details and problems of implementing a domain in Architect.

This chapter is organized along the lines of the population methodology in Figure 4.8;

domain analysis, domain implementation, and domain evaluation of the DSP domain are

discussed in that order, each in a separate section. The final section describes errors in

the Architect system that affect the implementation and use of the DSP domain. First,

however, we will provide a brief definition of the DSP domain.

5.2 The DSP domain

"Digital Signal processing deals with the representation of signals as ordered se-

quences of numbers and the processing of those sequences" (37:1). These signals are not

always the typical electro-magnetic radiation, like radio signals, that first comes to mind;

they can come from anything measurable, like temperature samples, the number of stars

visible every midnight, or how long it takes to get dressed every morning. Each element

of a signal is called a sample; a signal consists of an ordered sequence of samples. Signals

can consist of real or imaginary numbers, and can be multidimensional (i.e., a sample can

contain more than one number, but all samples in a signal must be the same size). Typi-

cal fields in which DSP has played a major role include speech and data communication,

biomedical engineering, acoustics, sonar, radar, seismology, oil exploration, instrumenta-

tion, robotics, and consumer electronics, among many others (29:1). Typical reasons for

processing these sequences of numbers include: estimation of characteristic signal parame-
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ters, elimination or reduction of unwanted interference, and transformation of a signal into

a form that is in some sense more informative (37).

5.3 Domain Analysis

Since our work concentrates on domain implementation, the specific method we used

to analyze the DSP domain is not particularly important to this research. However, it

is briefly discussed here for four reasons. First, presentation of our DSP domain analysis

process shows how the domain model and component specifications (the domain analysis

outputs from Figure 3.4) are created so that they can be used in the domain implementation

process. Second, the domain analysis methodology presented here is particularly useful in

generating these outputs in a form that can be easily used in the domain implementation

process for Architect. Third, even though identifying a particular domain analysis method

is not important to this research, an example of a domain analysis process is helpful in

understanding how to populate Architect's Technology Base. And finally, we present the

domain analysis method we used to help show specific cases where the separation of the

domain analysis process from a particular DOACS is not always best.

5.3.1 The Independence Between Domain Analysis and a Domain Implementation.

During the discussion of our generic knowledge base population methodology in Chap-

ter HI, we proposed that activities 1 and 2 in Figure 3.4 (which comprise the domain

analysis process) should be independent of a particular DOACS (see Section 3.3.2). How-

ever, based on the results of our research, we conclude that this independence of domain

analysis and domain implementation cannot always be accomplished and, even if it could,

it might not be the most efficient method.

In Section 3.3 we compared the division between domain analysis and domain im-

plementation to the division between the front and back ends of a compiler. This works

well during compiler generation because, while there is not a single intermediate language,

there are a few standardized ones; and these standard intermediate languages have the

same basic functionality. The results of a domain analysis, however, are not fully un-

derstood, much less standardized. We believe that when domain analysis becomes more
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fully understood and standardized, it can be separated from domain implementation as we

propose (similar to the separation of the front and back ends of a compiler).

Even if the technology was currently available to implement this separation between

the domain analysis and domain implementation phases, in some situations complete sep-

aration is difficult and not the best way to populate a knowledge base. For a small project

(like this research effort), one person may take on the roles of both the Domain Expert

and the Software Engineer. In this case, it is difficult, if not impossible, for that person

to completely ignore his/her Software Engineer responsibilities during the domain analysis

phase. The two phases should still be done separately, but the requirements of domain

implementation will "bleed" over into domain analysis. Also, if the domain analysis is only

going to be used to populate one knowledge base, then it can be accomplished faster and

more efficiently if it is tailored to meet the requirements of the knowledge base. For ex-

ample, if the DOACS does not have the capability for domain visualization, then it would

be a waste of time to collect this information during domain analysis. Another example is

that the information identified during domain analysis could be collected in a form based

on the architecture(s) available in the DOACS. It is our opinion that this could represent

a significant time savings during the population process; an example of this is identified in

the following section. In any case, the change to our methodology to handle this is to add

"domain implementation requirements" as an input to activities one and two in Figures 3.4

and 4.8.

5.3.2 The Domain Analysis Method Used. For this effort we used part of Mc-

Cain's Software Development Methodology for Reusable Components as the basis of our

domain analysis method. In (25), "a conventional product development model is used as

a basis for a methodology for the construction of reusable software components" (25:70).

Although his methodology does not deal with the population of knowledge bases, step

two of his eight step process is a domain analysis method that fits well into our generic

knowledge base population methodology.

There are five activities in this method:

1. Prepare Domain Information
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2. Define reusable entities

3. Define reusable abstractions

4. Perform classification of reusable abstractions

5. For each component, perform a component domain analysis

Activities two through five are listed verbatim from the domain analysis part of McCain's

method; activity one was added by this research. McCain's method has an additional

step prior to the domain analysis step, called "perform market analysis", that covers some

of what this added activity entails, but his method is oriented towards selling software,

where we are more interested in basic domain analysis. Step one is from Prieto-Df az's

method discussed in Chapter HI-it is the first step in Figure 3.2 (32:67). Note that the

last activity in McCain's method maps directly onto the second activity of our generic

population method (Figure 3.4).

McCain then goes on to list the activities that comprise a component domain anal-

ysis (25:74-76):

1. Define abstract interface specification. For each, identify:

"* Name

"* Description

"* Allowable values

"* Default value(s)

"* Error messages

2. Perform constraint analysis to minimize abstraction constraints

3. Define applicable algorithms and/or existing software

4. Define customization requirements based on the abstract interface specification

5. Define component visualization(s)

Again, these activities are listed verbatim from step two of McCain's method, except that

we added the last one because McCain's process does not deal with component visualiza-
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tions. These visualizations are needed to implement a domain in Architect. This addition

illustrates how the DOACS's requirements can influence the domain analysis method.

As stated before, this method fits well into our generic knowledge base populp.tion

method and its output is in a form that can be easily used to implement a domain in the

current version of Architect. However, as capabilities are added to Architect, more and

different types of information will have to be collected during the domain analysis process.

For example, there are plans to add domain-specific semantic checks to Architect; this

PAdition will require that domain-specific semantic rules be identified during the domain

analysis process, which in-turn requires that a step be added to the above method to collect

this information. If the state of the art was advanced enough to allow a standard domain

analysis output to capture everything necessary in a domain, then an addition of more

domain analysis steps like this one would never be needed.

5.3.3 Analyzing the DSP Domain. In this section we describe our analysis of

the DSP domain. This discussion is organized according to the domain analysis method

presented in the last section. In each step, some examples are given.

5.3.3.1 Prepare Domain Information. As stated in the previous section, we

used Prieto-Diaz's Prepare Domain Information as the first activity in our domain analysis

method. Prieto-Diaz breaks this activity down into five steps; the first four are applicable

to our method 1 (32:67):

" Define Domain Analysis Approach: our domain analysis method was presented in

Section 5.3.2.

"* Define Domain: a description of the DSP domain was presented in Section 5.2.

"* Bound Domain: we identified several bounds for the DSP domain:

1. Discrete-time: "A discrete-time system is defined mathematically as a transfor-

mation or operator that maps an input sequence with values x[n] into an output

1Part of Prieto-Diaz's fifth step is to consolidate the outputs of the first four steps into a document, the
rest is covered in later activities in our method.
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sequence with values y[n]. This can be denoted as : y[n] = T{x[n]}..." (29:17).

In this representation, x[n] and y[n] denote input and output signals for the

operation T. X[i] (where i is a specific natural number) represents the value of

a specific value (sample) of signal x[n].

2. Deterministic: each sample of a signal is uniquely specified by a mathematical

expression; in most cases, a real or complex number.

3. Finite-duration: signals are defined during some finite time interval and assumed

to be zero outside that interval (some references, like (38), assume the values

outside the specified time interval to be undefined, but this assumption is harder

to implement in a computer).

4. One-dimensional: signals have only one dependent and one independent vari-

able. If a signal was composed of temperature samples over time, then time is

the independent variable and temperature is the dependent variable (from this

point on we will assume time is the independent variable, remembering that

other independent variables can be used). Multi-dimensional signal processing

could easily be added to the domain by duplicating each component and adding

a "2D" subscript to each of these duplicated component's names.

5. Normalized: the interval between any two sequential values of the independent

variable is the saie between signals. For example, if the independent variable

is time, then two signals being added together are assumed to have the same

elapsed time between each sample of all signals used in an application (for

example, all signals are sampled at a rate of three samples per second).

6. Linear: for T{xi[n]} = y1 [n] and T{x 2[n]} = y2[n], T is linear if

Tjx1 [n] + x2[n]} = Tjx1 [n]} + Tfx2[n]} = y1 [n] + y2[n] and

Tjax[n]} = aTfx[n]} = ay[n]. The first equality is called the additive property;

the second is called the homogeneity or scaling property. All operations (and

combinations of operations) for this domain model are linear.

7. Time-invariant (also called shift-invariant): a time shift or delay of the input

signal causes a corresponding shift in the output signal.
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8. Real: all signals are real, as opposed to signals that cannot exist in the real

world such as the exponential signal x[n] = e" whose values increase forever.

These bounds are typical DSP restrictions. More detailed discussions can be found

in (29) and (38), among others.

* Select Knowledge Sources:

1. Existing Systems: the three we found most useful were Khoros (40), PCDSP (2),

and MatLab (21). The Joint-Modeling and Simulation System project (6) is

developing DSP components, but we only had access to a portion of the Ada

code. No documentation, descriptions, or domain analysis results were available.

From this code, it appears that during the domain analysis process the DSP

components were captured in a form that would facilitate implementation in

Architect (in the code each DSP component is implemented in its own package,

with inputs, outputs, attributes, and an update function just like in Architect).

However, even if we had the complete set of J-MASS DSP Ada code, low-level

language code is not a sufficient input for the Architect domain implementation

process because, among other reasons, low level design decisions are made in

creating code which should not influence domain analysis.

2. Experts: AFIT faculty and students conducting DSP research were consulted

during the domain analysis and domain implementation activities.

3. Existing Documentation: several texts on DSP were used. The most helpful

were (29), (38), (11), (19), (24), and (30).

5.3.3.2 Define Reusable Entities and Abstractions. In this activity, reusable

entities and reusable abstractions are identified and defined. "Reusable entities are those

entities for which a collection of related independently selectable reusable components may

be defined.. .Reusable abstractions identify candidate independently selectable reusable

components" (25:74). In simpler terms, the reusable abstractions are the components of

the domain that will be used in composing applications, while the reusable entities are

generalizations (higher level classes) of those components. Although it is not apparent

5-7



from McCain's definitions, he does allow for multiple levels of reusable entities (i.e. gener-

alizations of generalizations).

We have listed the "define reusable entities" and "define reusable abstractions" ac-

tivities together because not all object-oriented methodologies have them in the same order

as McCain. In DSP domain analysis, we interleaved these two activities; in some parts of

the domain we identified the entities first and then the abstractions for that entity, and

in other parts we identified them in the reverse order. The results of this activity for the

DSP domain are deferred until the description of the next activity.

5.3.3.3 Perform Classification of Reusable Abstractions. In the Perform

Classification of Reusable Abstractions activity, the Domain Expert takes the components

and generalizations (reusable entities and abstractions) from the previous activity and

organizes them into an object model hierarchy. During this activity for the DSP domain,

we found the existing systems listed in Section 5.3.3.1 to be particularly useful (they were

also useful during the last activity). We used them by extracting their domain object

model hierarchies and comparing them to each other and our hierarchy. The upper levels

of these extracted hierarchies (down to, but not including, the components that would be

the leaves of these trees) are shown in Figures 5.1 (40), 5.2 (2), and 5.3 (21). These figures

use the object model notation introduced in Section 4.2.2.

The Khoros system (40) was the most helpful of the three, most likely because Khoros

is a DOACS with similar capabilities to Architect. It should be noted that the DSP domain

model hierarchy for MatLab includes only the parts listed in the Digital Signal Processing

Toolbox (21); there are many other parts of MatLab (especially the arithmetic functions)

that can be used in conjunction with this Toolbox.

The domain model hierarchy we developed for the DSP domain during this activity

is shown in Figure 5.4. In the interests of space, the components are listed under each class

instead of being shown in boxes linked to their parents. In general, the reusable entities

identified in the previous activity become the interior nodes in the tree; the reusable

abstractions become the leaves. In a domain as diverse and rapidly changing as DSP,

no domain model can possibly include all aspects of the domain. In this domain model
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Figure 5.1 Khoros DSP domain model hierarchy

Figure 5.2 PCDSP domain model hierarchy
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Figure 5.3 MatLab DSP domain model hierarchy
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hierarchy, only a canonical set of components have been identified; there are many others

that could have been included.

We developed this domain model hierarchy iteratively (i.e. this is not the first hier-

archy we developed) by comparing the information gathered from the knowledge sources

listed in Section 5.3.3.1. After we developed our first full domain hierarchy, we held a

mini- "design review" where we presented our results to a domain expert. Figure 5.4 shows

the hierarchy after the domain expert's suggestions were included.

Figure 5.4 shows the domain model hierarchy only; each item in this figure must

also contain a definition and list of attributes. For example, the following definition and

attributes were identified for the Discrete Fourier transform (DFT) component:

Name: Discrete Fourier transform (DFT).

Description: The Discrete Fourier transform (sometimes called the

Discrete-Time Fourier transform in DSP) converts a signal from the time domain to the

frequency domain. The independent variable of the resulting signal is radians and, no

matter how many samples it consists of, the first sample is at 0 radians and the last is

at 27r radians (the rest are evenly distributed between this range). For real signals, the

output from 0 to 7r is the mirror of the output from 7r to 27r. The converse of the DFT is

the inverse Discrete Fourier transform (IDFT).

Attributes: The DFT only contains one attribute:

"* Name: Scale-by-N?2

"* Type: boolean

"* Description: when true, this attribute causes each sample of the output of the DFT

to be scaled (divided) by N, where N is the number of samples in the input signal.

2 The question mark is part of the name.
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5.3.3.4 Perform Component Domain Analysis. Now that the domain model

hierarchy has been created, each of the components must be specified in more detail. Again,

we will use the DFT component as an example:

1. Define abstract interface: The DFT component has one input:

"* Name: Input

"* Description: a signal.

"* Allowable values: any valid signal.

"* Default value(s): none.

"* Error messages: "input signal not defined" if the input signal has not been

provided to the DFT.

The DFT component also has one output:

"* Name: Output

"* Description: a signal.

"* Allowable values: any valid signal containing complex numbers.

"* Default value(s): none.

"* Error messages: none.

2. Perform constraint analysis: there are no constraints on our DFT component in

general (other than those on the domain as a whole); however, different algorithms

for comnputing a DFT have different constraints. For example, if we used the standard

Fast Fourier transform (FFT) algorithm for calculating the DFT, the number of

samples in the input signal would have to be a perfect square.

3. Define applicable algorithms: the DFT is specified by the equation

X[k] = J,=-' x[n]WN", where N is the number of samples in the input signal and

WN =e-j(21r/N) (in signal notation, x[n] denotes a signal in the time domain while

X[n] denotes a signal in the frequency domain; the first sample of each is at n=O).

The equalities e±Aj = cos(A) ± j * sin(A) and e~j0` = e±j(=•l)v can also be

useful. One pseudo-code algorithm to implement the DFT is:
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let N be the size of the input signal
for i in 0 to N-1 do

Output(i) a 0
for j in 0 to N-1 do

A - (2*pi*i*j)/N
Output(i) - Output(i) + Input(j) * (cos(A) - j*sin(A))

end(for)
if Scale-by-N? then

Output(i) M Output(i) / N
end(if)

end(for)

return Output

4. Define customization requirements: the DFT component may be implemented as two

components, one that takes a signal of real samples, and one that takes a signal of

complex samples. The real sample case is the more common. Also, the attribute

Scale-by-N? should be assigned at run-time to customize that particular DFT com-

ponent.

5. Define component visualization(s): the DFT component does not have a commonly

accepted visualization; however, there is a common visualization for a generic trans-

form. Therefore, the DFT component may be visualized as: iI . There are

no changes to this visualization to reflect state changes (since the DFT component

has no state other than the value of it's attribute).

Although the DFT component does not have a commonly accepted visualization,

other components do. To find these visualizations, the Domain Expert should look

for guidance from existing systems and documentation (books). Figure 5, which we

found in (11:373), shows an example of the type of visualization information that the

Domain Expert should look for.

5.4 Domain Implementation in Architect

In this section we describe our DSP domain implementation in Architect. This

process consists of activities three and four in the Architect instantiation of our generic

knowledge base population methodology (see Figure 4.8). These activities are discussed in

the following two sections.
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Figure 5.5 Common filter component visualizations

5.4.1 Implement Domain Model. Barring any problems found at this stage, if

the domain analysis is detailed and consistent, then the Implement Domain Model activity

of our process (described in Section 4.3.2.1) is trivial. First, the class hierarchy from

Figure 5.4 is transformed into Architect domain class code. The code for the DSP domain

is shown in Figure 5.6.

There are two reasons for the differences between the classes in Figure 5.4 and Fig-

ure 5.6. The first reason is that, due to time constraints, we decided not to implement all

identified components. This also demonstrates the capability we discussed Section 3.3.1 to

implement a portion of the domain, then use that portion to generate applications before

the rest of the domain is implemented. The second reason is that Figure 5.4 was our first

attempt at structuring the DSP domain; this structure evolved during our thesis effort.

The final structure appears in Section 5.5, where we compare it to the original and discuss

the differences.

The code that implements the domain-specific types and domain-specific functions

is shown in Figure 5.7. In the next activity, Implement Primitive Classes, one of the

items that must be specified for each primitive class is the type of the data being used in

that input or output. If this information is other than one of the five basic REFINE types

(boolean, integer, real, string, symbol), then a domain-specific type must be defined for this

information. The main purpose of the domain-specific functions is to provide methods to

manipulate the domain-specific types, although any function that will be used repeatedly

in the primitive update functions should be defined here.
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% domain model classes
var DSP object-class subtype-of Primitive-Obj

var Signals object-class subtype-of DSP

var Sinusoid object-class subtype-of Signals %prim
var Stored-Signal : object-class subtype-of Signals %prim
var Unit-Sample-Sequence : object-class subtype-of Signals %prim
var Unit-Step-Sequence : object-class subtype-of Signals %prim
var loise : object-class subtype-of Signals %prim
var Piecevise-Linear : object-class subtype-of Signals %pria
var Displays : object-class subtype-of DSP
var Print-Signal object-class subtype-of Displays %prim
var Save-Signal object-class subtype-of Displays %prim
var Graph-l-Signal object-class subtype-of Displays %prim
var Graph-2-Signal object-class subtype-of Displays %prim
var Graph-3-Signal object-class subtype-of Displays %prim
var Graph-4-Signal object-class subtype-of Displays %prim

var Signal-Arithmetic object-class subtype-of DSP
var Signal-Adder object-class subtype-of Signal-Arithmetic %prim
var Signal-Multiplier object-class subtype-of Signal-Arithmetic %prim
qar Signal-Subtractor object-class subtype-of Signal-Arithmetic %prim
var Signal-Divider object-class subtype-of Signal-Arithmetic %prim
var Signal-Abs-Dif object-class subtype-of Signal-Arithmetic %prim
var Real-to-Complex object-class subtype-of Signal-Arithmetic %prim
var Complex-to-Real object-class subtype-of Signal-Arithmetic %prim
var Filter-Components object-class subtype-of DSP
var Adder object-class subtype-of Filter-Components %prim
var Delay object-class subtype-of Filter-Components %prim
var Multiplier object-class subtype-of Filter-Components Xprim
var Input-Buffer object-class subtype-of Filter-Components %prim
var Output-Buffer object-class subtype-of Filter-Components %prim
var Signal-Processing object-class subtype-of DSP

var Transforms object-class subtype-of Signal-Processing
var DFT object-class subtype-of Transforms Xprim
var IDFT object-class subtype-of Transforms %prim
var Spectral-Estimation object-class subtype-of Signal-Processing
var Filters : object-class subtype-of Signal-Processing

var Time-Filter object-class subtype-of Filters %prim
var Frequency-Filter object-class subtype-of Filters %prim

% specific filters belong here
var Filter-Design object-class subtype-of Signal-Processing
var User-Designed-Filter : object-class subtype-of Filter-Design %prim

%Butterworth, etc. filter designs belong here
var Linear-Operations : object-class subtype-of Signal-Processing
var Convolution : object-class subtype-of Linear-Operations %prim
var Signal-Manipulations : object-class subtype-of Signal-Processing
var Pad-Signal : object-class subtype-of Signal-Manipulations %prim
var Scale-Signal : object-class subtype-of Signal-Manipulations %prim
var Truncate-Signal : object-class subtype-of Signal-Manipulations %prim
var Window-Signal : object-class subtype-of Signal-Manipulations %prim
var Reverse-Signal : object-class subtype-of Signal-Manipulations %prim

Figure 5.6 Architect's domain class code for the DSP domain
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% domain-specific types

type sample-type = real
type real-signal-type - seq(sample-type)
type complex-sample-type a tuple (real-part: sample-type,

imaginary-part: sample-type)
type complex-signal-type* w eq(complex-sample-type)
type filter-design-type a tuple(a: seq(real), b: seq(real))

%domain-specific functions
function complex-add(I1 :complex-uample-type,

12:complex-sample-type) : complex-sample-type
(Xl.real-part + X2.real-part, Xi.imaginary-part + X2.imaginary-part>

function complex-multiply(Ii complex-sample-type,
M2complex-sampl*-type) :complex-sample-type

<X1.real-part * X2.real-part - Xi.imaginary-part 512.imaginary-part,

Xi.real-part * X2.imaginary-part + li.imaginary-part * 12.real-part>

function complex-divide(Xli:complex-sample-type,
12:complex-sample-type) : complex-sample-type

let(sum-squ : real - X2.real-part e X2.real-part X 2.imaginary-part * X2.imaginary-part)
<(X1.real-part * X2.real-part + Xi.imaginary-part 5 2.imaginary-part) / sum-squ,

(X1.imaginary-part * 12.real-part - Z.real-part e 2.imaginary-part) / sum-squ>

function complex-of (N:real, P :real) :complex- sample-type
< coerceCK * cou(P), 'single-float),

coerceCH * sin(P), 'single-float) >

function Magnitude-of(C:complex-sample-type) : real
sqrt (C. real-part * C. real-part + C. imaginary-part eC. imaginary-part)

function Phase-of(C:complex-sample-type) : real
let(temp:real = 0.0)
C~real-part -a 0.0 -- > temp, a coerce (&tan (C. imaginary-part/C. real-part) I single-f lost);
tamp

Figure 5.7 User-defined types and functions for the DSP domain
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Next, the code to implement the attributes for each component, specify the DSL,

and describe the visual objects (VSL) is created3 . The code to implement these portions

of the domain model for the DFT component appears in Figures 5.8, 5.9, and 5.10. Note

that after the attributes (the DFT primitive class there has one attribute) are specified in

the attribute section of the code, they are just repeated in the other two portions. The

only case in which this repetition does not hold is if a primitive class has attributes that

the user should not be able to change (for example, attributes that hold state data); these

attributes are prevented from being edited by excluding them from the VSL. Remember

that the text above each attribute is displayed in the window in which the Application

Specialist can change the attribute values.

var DFT-COEFFICIENTS : map(DFT, set(name-value-obj))
computed-using

DFT-COEFFICIENTS(x) - {}

"If this attribute is set to true, then each sample of the output
will be divided by the number of samples in the input."
var DFT-SCALE-BY-INVERSE-N : map (DFT, boolean)

computed-using
DFT-SCALE-BT-IIVERSE-I(x) = false

Figure 5.8 Attribute code for the DFT primitive class

dft ::- ["dft" name
ff[(["scale" H! dft-scale-by-inverse-n] I

("no scale" -!!: dft-scale-by-inverse-nM])]}

builds dft,

Figure 5.9 DFT portion of the DSL

We have shown this code here because we have been using the DFT primitive class

as an example throughout the description of the population process. However, since the

DFT only has one attribute, it is not very interesting. Therefore, we also show this code

for the Sinusoid primitive class, which has several attributes, in Figures 5.11, 5.12, and

5.13

In these figures it is much easier to see how attributes are repeated in each portion.

This repetition lends itself to automation. It would be relatively easy to create a tool in

3From Chapter IV, DSL = Domain Specific Language and VSL = Visualization Specification Language.
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attributes for dft are
Icon :

label = class-and-name;
clip-icon-label? = false;
border-thickness a 0;
bitnap4icon-1 - dft-1;
bitmap4icon-s a dft-s

Edit :
name : symbol;
scale-by-inverse-n : boolean

end;

Figure 5.10 DFT portion of the VSL spec

var SIUUSOID-COEFFICIEITS : map(SINUSOID, set(nsame-value-obj))

computed-using
SIUUSOID-COEFFICIEITS(l) = {}

"the number of samples the output will contain"
var SIIUSOID-NUMBER-OF-SAMPLES : map(SINUSOID, integer)

computed-using
SIIUSOID-IUMBER-OF-SAMPLES(z) = 64

"this value is half the difference between the maximum
and minimum samples in the signal"
var SIIUSOID-AMPLITUDE : map(SIIUSOID, real)

computed-using
SIEUSOID-AMPLITUDE(x) a 1.0

"IMPORTANT: if a frequency > 0.5 is entered, aliasing
will occur and a signal with frequency < 0.5 will be generated."
var SINUSOID-FREQUENCY : map(SINUSOID, real)

computed-using

SINUSOID-FIEQUENCY(x) a 0.125

"the phase shift, in radians"
var SIIUSOID-PHASE-SHIFT : map(SINUSOID, real)

computed-using
SINUSOID-PHASE-SHIFT(x) a 0.0

"this offset will be added to every sample in the signal"
var SINUSOID-MAGNITUDE-OFFSET : map(SINUSOID, real)

computed-using

SINUSOID-MAGIITUDE-OFFSET(x) a 0.0

Figure 5.11 Attribute code for the Sinusoid primitive class
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sinusoid ::- ["sinusoid" name
(["S samples:" sinusoid-nunmber-of-samplen]
["amplitude:" sinusoid-amplitude]
("frequency:" sinusoid-frequency]
["phase shift:" sinusoid-phase-shift]
("magnitude-offset:" sinnsoid-magnitude-offset] }]

builds sinusoid,

Figure 5.12 Sinusoid portion of the DSL

attributes for sinusoid are
Icon :

label = class-and-name;
clip-icon-label? - false;
border-thickness - 0;
bitmap4icon-i a sinusoid-l;
bitmap4icon-s a sinusoid-s

Edit :
name : symbol;

number-of-samples : integer;
amplitude real;
frequency : real;
phase-shift : real;

magnitude-offset : real
end;

Figure 5.13 Sinusoid portion of the VSL spec

5-19



which the Software Engineer would enter the attributes and whether or not each one is

allowed to be changed by the Application Specialist. The tool would then generate this

code. As a matter of fact, this tool should be built to cover the whole Architect domain

implementation process (see Section 6.3).

The final step in implementing the domain model is to create the code that tells the

AVSI where the icon files are for the different primitive classes. The portion of this code

for the DFT primitive class is shown in Figure 5.14. The actual icons are created in the

during the next activity (Implement Primitive Classes), but because of the Architect file

conventions (see Appendix C), it is easier to specify this code for the whole domain at the

same time, rather than adding to this code individually for each primitive class.

var dft-1: any-type (cv: :read-bitmap("DSP-TECH-BASE/dft.icon-l"))
var dft-s: any-type a (cv: : read-bitmap ( DSP-TECH-BASE/dft. icon- "))

Figure 5.14 DFT primitive class icon object definitions

5.4.2 Implement Primitive Classes. After the domain model is implemented, the

the code to implement the interface (inputs and outputs), class descriptiron, and update

function(s) for each primitive class is created. The code for the DFT primitive class appears

in Figure 5.15.

Due to the form of the Domain Analysis outputs, the creation of this code simply

involved converting pseudo-code into REFINE code. We captured the component function-

ality during the Domain Analysis process in this fashion (with only one function, which is

based on transforming inputs to outputs) because we knew the form that the domain im-

plementation would take. This is another example of the DOACS knowledge base structure

affecting the Domain Analysis process.

The input/output type tell Architect what type of data that input/output contains.

This type must be one of the basic REFINE types (boolean, integer, real, character, string,

and symbol) or one of the user defined types entered implemented during the Domain

Implementation activity.
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%inputs/outputs- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

var DFT-INPUT-DATA :set(import-obj) -
{.et-attrs (make-object('import-obj),

'import-name, 'inut
'import-category, 'real-signal,
'import-type-data, 'real-signal-type) }

var DFT-OlUTPUT-DATA l et (export-obj)
{set-attrs (make-object('export-obj),

'export-name, 'output,
'export-category, 'complex-signal,
,export-type-data, 'complex-signal-type) }

%set description -------------------------------------------------------------

form set-and-gate-description
re: :zl-documentation(find-object( 're: :binding, 'DFT)) <-

"The Discrete Fourier transform takes a signal in the time domain and
converts it to the frequence domain."

%update functions ------------------------------------------------------------
function DFT-UPDATE (subsystem subsystem-obj,

the-dft DFT)a

format(dsp-debug, "DFT-UPDATE on s1-", name(the-dft));

let CS :real-signal-type - get-import('input, subsystem, the-dft),
0 :complex-signal-type - [J,
angle real - 0.0,
the-size :integer a 0,
cn .complex-number - <0.0, 0.0>)

the-size <- size(S) -1;

(enumerate i from 0 to the-size do
cn.real-part <- 0.0;
cn.imaginary-part <- 0.0;
(enumerate j from 0 to the-size do

angle <- (2 * pi * i * j) / the-size;
cn.real-part <- coerce(cn.real-pat + S(J+1) * cos(angle),'single-float);
cn. imaginary-part <- -1 * coerce (cn. imaginary-part +

SQj+1) * sin(angle) ,'single-float));
if DFT-SCALE-BY-INYERSE-N (the-dft) then

cn.real-part <- cn.real-part / the-size;
cn. imaginary-part <- cn. imaginary-part / the-size;
0 <- append(O, cm)

else
o <- append~o, cm));

set-export(subsystem, the-dft, 'output, 0)

var DFT-UPDITE-FUNCTIOJ map(DFT, symbol)
computed-using

DFT-UPDATE-FUNCTION (x) - 'DFT-UPD&TE

Figure 5.15 DFT primitive class code
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There is only one piece of information that the Software Engineer must create dur-

ing this whole domain implementation process (all the rest of the needed information is

provided in the domain analysis results): the category names for the inputs and outputs.

These category names are used by Architect during the semantics check to ensure that two

connected components are allowed to be connected. If the category names are not the same

for a connected input and output, then an error message is displayed and the application

cannot be executed. There are no restrictions on these names, except that they must con-

tain no spaces (they are not case-sensitive). Therefore, the Software Engineer can name

them anything he/she wants (hopefully something descriptive of the data they contain),

but the names must be consistent across all primitive classes. In the DSP domain there are

four categories of inputs/outputs: real-signal, complex-signal, sample, and filter-design.

After the primitive implementation code is generated, the last step is to create the

primitive class icons. Currently, these icons are being generated using the IconEdit tool

shown in Figure 4.16. As stated in Section 4.3.2.2, two separate icons need to be created

for each primitive class: one large (64x64) and one small (32x32). The large icons for the

DSP domain are shown in Figure 5.16, which is a screen capture of the DSP Technology

Base Window.

5.5 Evaluate Domain Development

SThe above discussions of the first four activities accomplished during the Architect

DSP implementation process were written as if they had been done all at once without any

mistakes; however, this is not the case. Our generic knowledge base population methodol-

ogy process was designed to be an iterative process (discussed through-out Chapter III); it

is impractical to expect that these four activities could be consistent, complete, and correct

the first time through. Also, both the domain analysis results and the domain implemen-

tation should be evolved over time; therefore, the outputs of the first four activities are

evaluated in this final activity. These evaluations feed back into the other four activities

to provide this evolution.

In this section, we will discuss the evaluation and evolution of the domain model

hierarchy and the testing of the individual primitives. The testing of the domain imple-
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Figure 5.16 The DSP Technology Base Window

mentation, as specified in Section 4.3.3, was accomplished by creating "simple" applica-

tions that contain only a few primitives whose correct outputs were known. Some of these

applications are presented in Appendix B.

5.5.1 Evolving the DSP Domain Hierarchy. As stated previously, the DSP do-

main model hierarchy shown in Figure 5.4 was the first attempt at classifying the domain.

Figure 5.17 shows the final DSP domain model hierarchy developed as a part of this re-

search (the main differences will be explained in the following paragraphs). It is expected

that this hierarchy, along with the rest of the domain information, will continue to develop

over time.

The changes made to the DSP domain model hierarchy were made for three main

reasons. The first was to make the domain model more complete; more Transforms and

Signal Manipulations components were added for this reason. However, with a complex

and evolving domain like DSP, it will not be possible to add all possible components to

5-23



- -

- (S M• *p)

Figure 5.17 Revised Architect DSP domain hierarchy

the model. The Domain Engineer should resist the temptation to add components just

because they can be added: only those components that are expected to be of use should

be added. If a missing useful component is identified later, it can easily be added.

The second reason is that, as our understanding of the DSP domain grew, we decided

to restructure the DSP model classes. The best example of a change for this reason is the

restructuring of the filter portion of the model hierarchy (the lower right-hand comer of

Figures 5.4 and 5.17. After more research into how filters were created, we decided that,

while the structure in Figure 5.4 is a valid way of ordering filter components, the structure

in Figure 5.17 is better. In this structure, an Application Specialist can create a filter

by first choosing a generic time or frequency filter (which have attributes for specifying

lowpass, highpass, banpass, or banstop) and then incorporating one of the standard filter

designs, or by choosing a specific pre-designed filter (represented by "specific filters" in

Figure 5.17). We do not attempt to list any pre-designed filters here because there are an

infinite number of them. They should be implemented as the need for them is identified

(we did implement one, the window-lowpass-filter, to validate the concept). In both model
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hierarchies, the Application Specialist can also create a filter by using the primitives listed

under "filter components".

The third reason for the changes between our starting and current DSP domain model

hierarchies is that missing components were identified during the domain implementation

and even during the use of the domain in Architect as application were composed. We

identified that the input/output buffers under the Filter Components class were needed

during the domain implementation phase. Most of the DSP components in our model

have inputs and outputs consisting of signals, but the components under Filter Compo-

nents (adder, delay, and multiplier) have inputs/outputs that consist of a single sample.

Therefore, if these components are going to be used with other components (for example,

Signals and Displays components), then there must be some intermediate components that

convert between these two types. For this reason, the input/output buffers Aere added.

We did not discover that the real-to-complex and complex-to-real components (under the

Signal Arithmetic class) were needed until we were actually composing test applications.

Specifically, we wanted to see a graph of the output of a DFT primitive, but this was not

possible because the DFT primitive class outputs a complex-signal while all the Display

primitive classes need a real-signal for their inputs.

The above paragraphs describe the evolution of the DSP domain model hierarchy

during our thesis effort. The components defined in the Domain Analysis process, the

DSP domain model implementation, and the DSP Architect primitives also evolved during

this time. The evolution of the defined Domain Analysis components and DSP domain

model implementation, while significant, are not as interesting or readily identifiable, and

so will not be discussed here.

5.5.2 Testing Primitives. Architect has a tool for testing the behavior of prim-

itives, called Test-Primitive. Figure 5.18 shows this tool being used to test the Complex-

To-Real primitive.

The Test-Primitive function controls five windows. The first, shown in the upper

right, is titled Test-Primitive and displays the name and icon of the primitive under test,

along with buttons to update the primitive and exit this tool. The window below this
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one is a text-edit window containing automatically generated REFINE code in which the

Software Engineer enters the desired test-case inputs (a separate section is created for each

input - in this case there is only one). The window in the lower left, titled Attributes,

lists the current values of the attributes for the primitive (in this case there is only one)

and allows them to be changed. The Outputs window, immediately above the Attributes

window, shows the outputs of the primitive (again, in this case there is only one) after it

has been updated. The window behind this one, titled Inputs, is not necessarily needed-it

just shows the current values of the inputs as a verification that the inputs entered in the

text-edit window were indeed correctly interpreted and assigned to the appropriate inputs.

The Test-Primitive function is used by entering the desired test-case attribute and

input values, choosing "Update" from the Test-Primitive window, and then comparing the

outputs to the expected test-case outputs. Assuming these steps are accomplished cor-

rectly, a difference between the listed outputs and the expected test-case outputs demon-

strates an error in the primitive. The absence of an error cannot be demonstrated; there-

fore, the software engineer should use good testing techniques in choosing the test cases to

be examined (boundary testing, decision-point testing, etc.).

Once all the primitives have been tested separately (as described above for the DFT

primitive), the interface between the primitives needs to be tested. This was done by

creating some small applications whose expected behavior was already identified. Examples

of two of these applications can be found in Appendix B. Some of these applications were

validated by calculating the expected outputs for specific inputs by hand, while others

were validated by building a similar application in Khoros and MatLab and comparing the

results.

5.6 Architect Problems that Affect the Use and Implementation of the DSP Domain

Architect is an evolving system; the AFIT KBSE group continues to identify defi-

ciencies in and new composition methods for Architect. This section discusses four of the

biggest problems with Architect that have an impact on the implementation and use of

the DSP domain in Architect.
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5.6.1 "State" Attributes. The OCU model (described in Section 4.2.1) lists

several parts of a component, but Architect does not implement them all separately.

Specifically, OCU component attributes, state-data, and constants are all implemented

in Architect as primitive attributes, with no method to distinguish between them. This

combination of attributes and state-data, in particular, can cause problems in DSP ap-

plications (or any other domain, for that matter). The problem is that OCU component

state-data should be set to some specific value before each execution (initialized), while

OCU component attributes are set by the user and not initialized. Architect primitive

attributes, however, cannot be initialized. This can result in effectively non-deterministic

behavior, since the starting state of the primitives in Architect cannot be guaranteed to

be the same between each execution.

An example of a DSP primitive that demonstrates this problem is the delay primitive

(under the Filter Components in Figure 5.4). During each update, this primitive takes in

a signal sample and returns the sample taken in during the previous update. To hold

this value in between updates, the delay primitive has an attribute called last-sample

(it is not listed in the VSL specification file, and therefore cannot be modified by the

Application Specialist). Since there is no previous update to the first update, the delay

primitive should return a zero for that first update. To implement this, the starting

value of last-sample is zero. This works for the first execution of an application; however,

on subsequent executions of that same application, the starting value of last-sample is

whatever it happened to be set to during the last update of the primitive in the previous

execution: there is no automatic method to reset it to zero! To work around this problem,

the Application Specialist must remember to reset this attribute to zero for every delay

primitive in the application before every execution, or the output for that execution will

be invalid. Another work-around is to add a SetState call for each delay primitive in its

parent subsystem's update algorithm, but this cannot currently be done through the visual

system (AVSI). The problem is discussed in the next section.

5.6.2 Subsystem Update Algorithm. The AVSI does not currently provide a

method for entering all the allowable statements into the update algorithms of subsystems
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and applications. Specifically, SetState, SetFunction statements cannot be entered; also,

there is no method to enter primitive output values into the expressions of "if" and "while"

statements. The current work-around is to create the application, save the application,

edit the application save file to add these statements, and then reload the application.

An example of this limitation affecting our research surfaced in an application con-

taining Filter Components primitives. In general, such an application has a subsystem

that contains an input-buffer, some number of adders, delays, and multipliers, and an

output-buffer. The input-buffer takes in a signal and sends it out one sample at a time

to the adders, delays, and multipliers. The output-buffer collects the resulting samples

and combines them into a new signal. While other components transform a signal in

one update, this particular process takes several updates of each primitive to completely

transform the signal, requiring a "while" loop statement in that subsystem's update algo-

rithm. The "while" loop can be added through AVSI, but the problem occurs when the

conditional expression for the loop is built. To tell the subsystem when the last sample

of the signal has been sent out, the input-buffer has an output called "done", which is

set to true during the update when the last sample has been sent out. At this time, the

loop should terminate and a few more updates should be called to the other primitives in

the subsystem to process this last sample. However, the "done" output cannot be added

to the loop condition in AVSI; it must be entered by editing the application's saved file.

This is a problem because it requires the Application Specialist to have knowledge about

how Architect stores saved applications, and requires him/her to save, edit, and load the

application before he/she can simulate its execution.

5.6.3 Export Values. A related problem to the "state" attributes problem is

that export values are undefined at the beginning of the first execution of an application,

but on subsequent executions they start out with whatever values they were assigned last

during the previous execution. This causes effectively non-deterministic behavior in any

application that has a loop (or primitives being updated out of order). The Filter Com-

ponents primitives example from the last section demonstrates this problem; the adders,

delays, and multipliers in the subsystem described above are almost always composed into
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a looping structure. An example of this is shown in Figure 5.19. This configuration shows

an accumulator in which every sample of the output signal will be the sum of all the pre-

vious samples of the input signal. The first time this subsystem is updated, the export

value associated with the delay output is undefined, which the adder knows to interpret

as a zero. Every time thereafter, even if the delay last-sample attribute is reset to zero,

the export value associated with that output will still be set to whatever value was output

on the previous update, resulting in the total sum of the previous signal being added in

to the current signal. This is not desired. The current work-around for this problem is

to reload the application each and every time before execution; when an application is

reloaded, all the export values are set to the REFINE "undefined" value (in other words,

they are initialized).

adder

input buffer output buffer

delay

Figure 5.19 An accumulator

5.6.4 Coefficients and Constants. Although coefficients are implemented for

primitives in Architect, their purpose is not well-defined and there is no clear method for

using them or changing their values. Therefore, we did not implement any coefficients

for DSP primitives. Whenever a case came up during the domain implementation phase

where we felt that a coefficient would be the logical choice, we used attributes instead. Also,

Architect does not have a method for implementing the constants in the OCU model; they

must also be implemented as attributes.
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5.7 Summary

This chapter described the DSP domain implementation accomplished as a part of

this thesis effort. This implementation was saccessful (as demonstrated by the applica-

tions shown in Appendix B), and is included in the current version of Architect. We

pointed out that McCain's domain analysis approach fits well into our generic knowledge

base population method and produces outputs that can easily be entered into Architect's

Technology Base. We also identified several cases where the domain analysis was not as

independent of the specific DOACS (in this case, Architect) as we had envisioned in our

generic population methodology, both because this was a small-scale implementation effort

(only one DOACS), as well as the fact that the state-of-the-art for domain analysis is not

advanced enough to capture all types of useful information in a standard format. Finally,

we discussed four problems in Architect that hinder implementation and use of a domain.

These issues will appear in the next chapter as recommendations for future research.
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VI. Conclusions and Recommendations

6.1 Results of This Research

From Chapter I (Section 1.2), the problem description for this research was:

Investigate and implement a method to populate the Technology Base (knowl-
edge base) in Architect and demonstrate that a more substantial domain can
be implemented in this system.

We were successful in achieving these objectives. First we defined and made generaliza-

tions about application composition systems, which resulted in G-DOACS (Figure 3.1).

To our knowledge, this generalization had not been attempted before. We then used the

G-DOACS concept to help define and generalize about methods to add domain informa-

tion to DOACSs, which led to the development of our generic knowledge base population

methodology (Figure 3.4) 1. This methodology is mostly a synthesis of three established

methods (5, 32, 25), but it does present some new concepts such as keeping the domain

analysis phase independent from the requirements of a particular DOACS, incorporating

"reusable applications" back into the domain model and domain implementation, and pro-

viding a direct and integrated method for evaluation and feedback. We then instantiated

this generic methodology for a specific DOACS: Architect (Figure 4.8). This step pro-

duced a formalized method to implement domains in Architect, meeting the first objective

of our problem statement. To substantiate this method, we analyzed the DSP domain,

implemented it in Architect, and validated this implementation by testing the primitives

and creating applications whose correct behaviors were known in advance. This process

accomplished the second objective in our problem statement.

6.2 Conclusions

Our conclusions concerning the generic knowledge base population methodology we

developed are:

1These first two steps were developed jointly with Sandy.
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"* Our generic knowledge base population methodology is valid. We instantiated it and

used that instantiation to implement the DSP domain. Also, Sandy instantiated the

same process for his research in (35).

"* Our generic knowledge base population methodology is indeed "generic". It is not

dependent on a particular domain analysis approach nor on a particular DOACS;

rather, it was designed to generalize them. We designed this methodology so that

it can be instantiated for any current object-oriented domain analysis approach and

DOACS, and hope it is able to accommodate future ones.

"* Domain analysis should be done as independently from the requirements of a partic-

ular DOACS as possible; however, complete independence is not currently possible

(as discussed in Section 5.3.1). Our generic population methodology specifies de-

coupling of the analysis and implementation phases, but the state-of-the-art is not

yet advanced enough to completely accomplish this goal, because there are no stan-

dardized methods and formats to capture all required domain knowledge. A simple

example is adding the domain visualization step to McCain's domain analysis process

(see Section 5.3.2)-as with all current domain analysis approaches, it did not provide

for capturing all the information that any DOACS would need. Also, we captured

the DSP domain using an architecture very similar to the one used in Architect (the

OCU model). This provided a significant time savings since conversion between ar-

chitectures is not currently well-understood; however, it also constrained the domain

analysis process with another Architect requirement. As domain analysis, domain

implementation, and application composition in general become more understood,

we believe that this division will be a natural result, much like the division between

the front and back ends of a compiler (discussed in Section 3.3).

"• The domain analysis and domain implementation steps of our process are not one-

time affairs. It is impractical to expect that a process as complicated as domain

analysis or domain implementation can be done all at once and be consistent and

complete. Also, new information (both about the domain as well as domain anal-

ysis/implementation methods) will always surface requiring changes; therefore the
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domain implementation, as well as the domain analysis results, must evolve over

time. Our generic methodology provides for this evolution.

The conclusions we arrived at concerning Architect are

"* Architect is capable of composing applications in more sophisticated domains. As

stated in Chapter I, before this research effort, only two relatively simple domains had

been implemented in Architect. One of the goals of this research was to implement a

domain that had more features (more interface types, wider scope, larger number of

primitives, etc)-this goal was met by implementing the DSP domain and composing

applications in that domain. There are some problems with Architect that limit the

DSP domain implementation, however. These problems were discussed in Section 5.6.

"* Implementing a domain in Architect is a relatively easy and straightforward task.

Additionally, this process is well-defined and is accomplished in the same manner for

every domain. If the domain analysis is accomplished correctly, domain implemen-

tation is simply an exercise of converting the domain information from the format

used in the domain analysis process to the format required by Architect. This type

of conversion process lends itself to automation, as discussed in the following section.

6.3 Recommendations for Further Research

Several ideas for further research were identified during our thesis effort. The more

important ones are listed below. The first few are more or less independent of Architect;

the last few make recommendations about including already research technologies into

Architect. Appendix D listr -nore recommendations for additions to Architect whose scope

was not broad enough to be listed here.

9 More research must be done in the area of domain analysis/domain implementation.

As stated above, this technology is still in its early stages and needs more study

before the application composition philosophy can become widespread. Specifically,

the type and method of capture of the information that needs to be collected during

the domain analysis phase to support the domain implementation in many different

systems needs to be better defined.
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" Research should be conducted into converting domain information from the knowl-

edge base of one DOACS into the knowledge base of another. This is based on the

idea that domain analysis should only be done once for a domain, not once every

time that domain is implemented in another DOACS. Based on our research and

that of Sandy (35), converting domain information from APTAS to Architect should

be possible. One step beyond converting information between DOACSs is to build

a system that captures domain information in a DOACS independent form. This

system could then be used to supply domain to different DOACSs.

" Methods to validate domains should be studied. In Architect, while the validation

of individual primitives is well-defined (using the Test Primitive tool), validating the

domain as a whole is not so well-defined. Research in this area may result in a "Test

Domain" tool, but as a minimum it should result in a formalized method with clear

and concise guidelines.

"* Collecting and 7mplementing domain-specific semantic information should be investi-

gated. Architect performs semantic checks on applications but currently only checks

constraints from the OCU model. Domain-specific semantic checks should be added;

however, how to collect, implement, and use this domain-specific semantic informa-

tion is not yet well-understood.

"* As stated above in our conclusions, domain implementations are not static; they need

to evolve. Part of this evolution may include changing the functionality of a primitive.

When a primitive changes, however, all the previously created applications need to

be changed also. Research needs to be conducted on what to do with previously

created applications when a primitive is changed.

"* The implementation of domain-specific architectures into Architect should be stud-

ied. Currently, Architect has only one architecture (the OCU model). Additional

architectures, or the ability of the Software Engineer to create a new architecture for

each domain, should be studied for addition to Architect.

"* The Architect domain implementation method formalized as a part of this research

(Chapter IV) needs to be updated with the database work accomplished by Cecil and
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Fullenkamp (7) and the event-driven domain implementation work accomplished by

Waggoner (41). As stated in Section 1.3 there were several research efforts involving

changes to Architect that were accomplished currently to our research; due to the

intractability of attempting to keep all these research efforts up-to-date with each

other, they were done independently for the most part2 . The results of the two

research efforts listed above made changes to Architect that affect our research;

therefore, when all these independent changes are integrated, our Architect domain

implementation method will have to be updated. We say "updated" because the

changes should be minor, except for the need to collect timing information during

the domain analysis process.

" Additional composition methods should be studied for possible implementation in

Architect. Currently Architect has only one composition method: the Application

Specialist chooses primitives and connects them together. Another possible com-

position method might be for the Application Specialist to identify the problem to

be solved by specifying parameters and answering questions, then having Architect

automatically compose the application. The filter design portion of the DSP domain

would be a good validation area for this research.

"* Now that this research has formalized the process of domain implementation in Ar-

chitect, research should be conducted into automating this process. Based on our

research effort, we conclude that such a tool could be easily created. For example,

the Software Engineer could enter the information required for domain implementa-

tion in Architect (see Appendix A) in a high-level form (perhaps by creating a visual

object model); this automated tool would transform this information and add it to

Architect's Technology Base. Such a tool would save time and reduce errors in the

domain implementation process (for example, as it stands now the software engineer

must specify the attributes of each primitive three times in three different formats;

this takes time and increases the potential for errors).

2As stated in Section 1.3, the one research effort we did completely incorporate into our work was
Cossentine's visualization research (9).
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After accomplishing this automation, research should be conducted into implement-

ing domains in Architect using automated domain analysis tools (one such tool is

OAKS (10), described in Section 3.3). This research should investigate using an

automated domain analysis tool to input domain information into Architect's Tech-

nology Base directly, as well as tying an automated domain analysis tool to the

domain implementation tool discussed above.

While Architect as it currently exists is a fully functional DOACS, there are several

features that would add to the system's capabilities. The features identified as a part of

this research effort that require further study are listed in Appendix D.

6.4 Concluding Remarks

Current software development methods are not capable of handling current, let alone

future, software requirements. Software engineers cannot continue to treat each develop-

ment effort as a separate and unique problem. Methodologies that focus on automated

reuse of domain, software engineering, and problem solving information need to become

the rule in software development organizations. Technologies, like application composi-

tion, that implement these methodologies will revolutionize the way in which software is

created so that development can keep up with demand. This research has contributed to

this future of automated, standardized software development by generalizing about appli-

cation composition systems, creating a methodology to populate applications composition

systems, and giving an example of a specific population process for a particular application

composition system.
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Appendix A. Domain Information Needed for Architect

This appendix summarizes the abstract domain information needed to implement a

domain in Architect and the form it takes in that implementation. This information must

be contained in the outputs of the domain analysis activity.

1. A Description of the Domain: includes domain assumptions and domain design in-

formation, among other things. Basically, include any information that the Software

Engineer will need to understand the domain analysis outputs. The Software En-

gineer will use this description, along with domain implementation information, to

develop the domain description that is included with the implementation in Archi-

tect.

2. Domain structure: a "tree-like" organization of reusable components (the leaves of

the tree - they will become primitives when implemented) and generalization classes

(branches in the tree). A name must be assigned to each node in the tree. An

example of such a domain structure is shown in Figure 5.17.

3. Interface types: each type of information that will be passed between the reusable

components must be defined. For each, a name and description of what data it

contains must be defined. An example in the DSP domain is the interface type

called complex-signal. The complex-signal type consists of a sequence of pairs of

real numbers where each element of the sequence represents one sample, the first

real number of each element represents the real part of a complex number, and

the second real number of each element represents the imaginary part of the same

complex number.

4. Reusable component definitions: for each reusable component listed above, the fol-

lowing must be defined:

* Description: text describing the purpose and use of this component

* Attributes: name, type, allowable values, whether or not it should be user-

editable, default value, and a text description

* Coefficients: name, allowable values, and default value
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"* Inputs/Outputs: name and interface type

"* Icon(s): for Architect, these icons must be bitmaps

"* Update function: for implementation in Architect, this function must be speci-

fied in REFINE

This short list is all the information needed in the domain analysis outputs to im-

plement a domain in Architect.
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Appendix B. Digital Signal Processing Examples in Architect

This appendix will consist of a two examples of DSP applications. The first is a

conical DSP application called a moving average, shown in Figure B.1. This particular

application is a four-sum moving average: each sample of the output is the average of the

current output along with the three previous samples. The multiplier primitive (looks like

a triangle) has a value of 0.25 for its multiply value. The input signal loaded from a file was

generated by a previous application that simply added a sinusoid with some noise. Note

that this application displays two signals: the original input (shown in Figure B.2) and

the output after going through the four-sum moving average part (shown in Figure B.3).

N

Dl DZ D3

Figure B.A A Four-Sum Moving Average
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Figure B.2 The Input to the Four-Sum Moving Average
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Figure B.3 The Output from the Four-Sum Moving Average
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The second application, called Window-Demo, shows why windowing should be used

before a Fourier transform is applied. For this application, shown in Figure B.4, a sinusoid

is transformed in two different ways and then both are displayed. The lower path takes

the input sinusoid through a Fourier transform and a complex-to-real conversion (the DFT

primitive outputs a complex signal, but the graph2-signal primitive can only show real

signals); the output from this path is shown in Figure B.5. The upper path takes the input

sinusoid through a window, and then through a Fourier transform and a complex-to-real

conversion just like the lower path; the output from this path is shown in Figure B.6. Note

that this output is much closer to the canonical representation of a sinusoid after a Fourier

transform has been applied, which is the purpose of windowing a signal.
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Figure B.5 The Fourier Transform without Windowing
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Figure B.6 The Fourier Transform with Windowing
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Appendix C. File Conventions for Architect

This appendix contains the file conventions currently being used for Architect.

Although all the code to implement a domain in the Technology Base could be

entered into one file, this file would be confusing, making changes difficult. To alleviate

this problem, file conventions are being -ised to manage this information. The following

files contain the domain information for Architect's Technology Base:

1. dm-<domain-name>.re: this file contains the domain-specific types, domain-specific

functions, domain class declarations (with structure), and the domain description.

This file includes the code in Figures 5.6 and 5.7.

2. <primitive-name>.re: one file for each primitive. This file contains the primitive

inputs and outputs, attributes, coefficients, description, and update function. This

ifie includes the code in Figures 5.8 and 5.15 for the DFT primitive.

3. <priniitive-name>.icon-l and <primitive-name>.icon-s: one each for every primi-

tive. These files contain the bitmaps that are used to create the primitive icons in

Architect. Currently, these files are created using the OpenWindows IconEdit tool.

4. gram-<domain-name>.re: this file contains the DSL grammar. A production is

created for each primitive as shown in Figure 5.9 for the DFT primitive. All attributes

for a primitive are listed except for "state" attributes that should be initialized to

their default values (specified in the previous file) every time the a primitive of that

class is loaded with an application.

5. vsl-<domain-name>.re: this file contains the domain visual specification that is

parsed in through Architect's VSL grammar. A section is entered for each primitive;

in this section, the attributes that should be editable by the Application Specialist

are entered (the un-editable attributes are not entered). This file includes the code

in Figure 5.10 for the DFT primitive.

6. var-<domain-name>.re: this file contains two lines for each primitive that simply

create the icon objects for each primitive. This file includes the code in Figure 5.10

for the DFT and Sinusoid primitives.
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The above file conventions are just one of a possible set of ways to organize the code

to implement a domain in REFINE. Comparing these file descriptions with the information

in the previous appendix, it can be seen that the first three types of files contain the bulk

of the information, the rest mostly repeat the information defined in these first three.
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Appendix D. Future Recommended Features for Architect

This appendix summarizes the features identified during this research effort that we

feel should be studied for incorporation into Architect.

1. There are currently no bounds on the value that can be assigned to primitive at-

tributes other than the standard type checking. It would be useful if the Software

Engineer could add additional bounds on the allowable values of an attribute; for

example, a primitive may have two attributes such that the value of one must be

less than the value of the other. The implementation of further restrictions should

be studied.

2. Although user-defined types (like real-signal-type) can be used to define primitive

attributes and input/outputs, they cannot be accessed in the if/while statement con-

ditional part. Currently, only real, integer, string, and boolean variables are allowed

in these statements. The ability to access user-defined types in these statements

should be added.

3. Integration of domain-independent primitives into Architect should be studied. For

example, the two DSP primitives that convert real numbers to/from complex numbers

should not be DSP-specific; they should be provided to any domain.

4. The ability to take a subsystem and add it to the technology base window with the

primitives should be added. This would allow the Application Specialist to add the

functionality of such a subsystem to applications without recreating and revalidating

it every time.

5. OCU component attributes, constants, and current-state variables are all imple-

mented in Architect as attributes; this causes problems in the DSP domain (discussed

in Section 5.6). These three variables should be implemented differently from each

other, or a method to distinguish between them should be added.

6. Several of the DSP primitives implemented as a part of this research have the same

functionality, the only difference is that they have a different number of inputs.

This is because all inputs must be connected before applications can be executed;
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however some components defined in the domain analysis do not have a fixed number

of inputs. One example in the DSP domain is the four graph-X-signal, where X is

1, 2, 3, or 4. If Architect had the ability to have optional inputs on primitives,

then only one graph primitive would have had to be implemented. Also, the ability

to have N-input primitives (where the Application Specialist specifies N) would be

useful. An example in the DSP domain where this would be useful is the adderX

primitives; only three of them were implemented because there are no bounds on X

for this primitive.

7. Some attribute types lend themselves to enumerated types; however, Architect does

not have the capability to handle these enumerated types. An example in the DSP

domain where this would be useful is the real-to-complex primitive. This primitive

has an attribute called conversion-type which tells the primitive what method to

use in converting the signal; there are four types: real, imaginary, magnitude, and

phase. When we implemented this primitive, we had to implement it as a symbol

and indicate in the attribute description that there were only four allowable values;

an enumerated type would have been much better

8. When making primitive connections internal to a subsystem, if an output is connected

to an input in that subsystem, there is nothing to show whether or not it is also

connected to another input outside the subsystem. This problem hides important

information from the Application Specialist.

9. Architect has the ability to use generically specified applications (called generics) as

described in (3) and (33); however, their purpose is not well-understood and AVSI

does not support them. Hence, further research would be valuable.
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Appendix E. REFINE Code Listings for Architect

The REFINE source code for Architect and the implemented DSP domain may be

obtained, upon request, from:

Maj Paul Bailor
AFIT/ENG
2950 P Street
Wright-Patterson AFB, OH 45433-7765

(513)255-9263
DSN 785-9263
email: pbailor@afit.af.mil
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